Skip to content
Snippets Groups Projects
Commit 4f7ac8db authored by Justin Carpentier's avatar Justin Carpentier Committed by GitHub
Browse files

Merge pull request #332 from jmirabel/devel

Update quaternions related operations
parents 81ce16e0 aa6b5178
No related branches found
No related tags found
No related merge requests found
...@@ -65,21 +65,63 @@ namespace se3 ...@@ -65,21 +65,63 @@ namespace se3
/// of the normalization function. /// of the normalization function.
/// ///
/// Only additions and multiplications are required. Neither square root nor /// Only additions and multiplications are required. Neither square root nor
/// division are used (except a division by 2). /// division are used (except a division by 2). Let \f$ \delta = ||q||^2 - 1 \f$.
/// Using the following limited development:
/// \f[ \frac{1}{||q||} = (1 + \delta)^{-\frac{1}{2}} = 1 - \frac{\delta}{2} + \mathcal{O}(\delta^2) \f]
///
/// The output is
/// \f[ q_{out} = q \times \frac{3 - ||q_{in}||^2}{2} \f]
///
/// The output quaternion is guaranted to statisfy the following:
/// \f[ | ||q_{out}|| - 1 | \le \frac{M}{2} ||q_{in}|| ( ||q_{in}||^2 - 1 )^2 \f]
/// where \f$ M = \frac{3}{4} (1 - \epsilon)^{-\frac{5}{2}} \f$
/// and \f$ \epsilon \f$ is the maximum tolerance of \f$ ||q_{in}||^2 - 1 \f$.
/// ///
/// \warning \f$ ||q||^2 - 1 \f$ should already be close to zero. /// \warning \f$ ||q||^2 - 1 \f$ should already be close to zero.
/// ///
/// \note See /// \note See
/// http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html#title3 /// http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html#title3
/// to know the reason why the argument is const. /// to know the reason why the argument is const.
template <typename D> void template <typename D>
firstOrderNormalize(const Eigen::QuaternionBase<D> & q) void firstOrderNormalize(const Eigen::QuaternionBase<D> & q)
{ {
assert(std::fabs(q.norm() - 1) < 1e-2);
typedef typename D::Scalar Scalar; typedef typename D::Scalar Scalar;
const Scalar alpha = ((Scalar)3 - q.squaredNorm()) / 2; const Scalar N2 = q.squaredNorm();
#ifndef NDEBUG
const Scalar epsilon = sqrt(sqrt(Eigen::NumTraits<Scalar>::epsilon()));
assert(std::fabs(N2-1.) <= epsilon);
#endif
const Scalar alpha = ((Scalar)3 - N2) / 2;
const_cast <Eigen::QuaternionBase<D> &> (q).coeffs() *= alpha; const_cast <Eigen::QuaternionBase<D> &> (q).coeffs() *= alpha;
#ifndef NDEBUG
const Scalar M = 3 * std::pow((Scalar)1.-epsilon, ((Scalar)-5)/2) / 4;
assert(std::fabs(q.norm() - 1) <=
std::max(M * sqrt(N2) * (N2 - 1)*(N2 - 1) / 2, Eigen::NumTraits<Scalar>::epsilon()));
#endif
} }
/// Uniformly random quaternion sphere.
template <typename D>
void uniformRandom (const Eigen::QuaternionBase<D> & q)
{
typedef typename D::Scalar Scalar;
typedef Eigen::QuaternionBase<D> Base;
// Rotational part
const Scalar u1 = (Scalar)rand() / RAND_MAX;
const Scalar u2 = (Scalar)rand() / RAND_MAX;
const Scalar u3 = (Scalar)rand() / RAND_MAX;
const Scalar mult1 = sqrt (1-u1);
const Scalar mult2 = sqrt (u1);
Scalar s2,c2; SINCOS(2.*PI*u2,&s2,&c2);
Scalar s3,c3; SINCOS(2.*PI*u3,&s3,&c3);
const_cast <Base &> (q).w() = mult1 * s2;
const_cast <Base &> (q).x() = mult1 * c2;
const_cast <Base &> (q).y() = mult2 * s3;
const_cast <Base &> (q).z() = mult2 * c3;
}
} }
#endif //#ifndef __math_quaternion_hpp__ #endif //#ifndef __math_quaternion_hpp__
...@@ -213,7 +213,7 @@ namespace se3 ...@@ -213,7 +213,7 @@ namespace se3
typedef Eigen::Map<const Motion_t::Quaternion_t> ConstQuaternionMap_t; typedef Eigen::Map<const Motion_t::Quaternion_t> ConstQuaternionMap_t;
ConstQuaternionMap_t quat(q_joint.template tail<4>().data()); ConstQuaternionMap_t quat(q_joint.template tail<4>().data());
assert(std::fabs(quat.coeffs().norm()-1.) <= sqrt(Eigen::NumTraits<typename V::Scalar>::epsilon())); assert(std::fabs(quat.coeffs().squaredNorm()-1.) <= sqrt(Eigen::NumTraits<typename V::Scalar>::epsilon()));
M.rotation(quat.matrix()); M.rotation(quat.matrix());
M.translation(q_joint.template head<3>()); M.translation(q_joint.template head<3>());
...@@ -314,7 +314,10 @@ namespace se3 ...@@ -314,7 +314,10 @@ namespace se3
ConfigVector_t random_impl() const ConfigVector_t random_impl() const
{ {
ConfigVector_t q(ConfigVector_t::Random()); ConfigVector_t q(ConfigVector_t::Random());
q.segment<4>(3).normalize();// /= q.segment<4>(3).norm();
typedef Eigen::Map<Motion_t::Quaternion_t> QuaternionMap_t;
uniformRandom(QuaternionMap_t(q.segment<4>(3).data()));
return q; return q;
} }
...@@ -335,22 +338,9 @@ namespace se3 ...@@ -335,22 +338,9 @@ namespace se3
result[i] = lower_pos_limit[i] + (upper_pos_limit[i] - lower_pos_limit[i]) * (Scalar)(rand())/RAND_MAX; result[i] = lower_pos_limit[i] + (upper_pos_limit[i] - lower_pos_limit[i]) * (Scalar)(rand())/RAND_MAX;
} }
// Rotational part typedef Eigen::Map<Motion_t::Quaternion_t> QuaternionMap_t;
const Scalar u1 = (Scalar)rand() / RAND_MAX; uniformRandom(QuaternionMap_t(result.segment<4>(3).data()));
const Scalar u2 = (Scalar)rand() / RAND_MAX;
const Scalar u3 = (Scalar)rand() / RAND_MAX;
const Scalar mult1 = sqrt (1-u1);
const Scalar mult2 = sqrt (u1);
Scalar s2,c2; SINCOS(2.*PI*u2,&s2,&c2);
Scalar s3,c3; SINCOS(2.*PI*u3,&s3,&c3);
result.segment<4>(3) << mult1 * s2,
mult1 * c2,
mult2 * s3,
mult2 * c3;
return result; return result;
} }
......
...@@ -356,31 +356,17 @@ namespace se3 ...@@ -356,31 +356,17 @@ namespace se3
ConfigVector_t random_impl() const ConfigVector_t random_impl() const
{ {
ConfigVector_t q(ConfigVector_t::Random()); ConfigVector_t q;
q.normalize(); typedef Eigen::Map<Motion_t::Quaternion_t> QuaternionMap_t;
uniformRandom(QuaternionMap_t(q.data()));
return q; return q;
} }
ConfigVector_t randomConfiguration_impl(const ConfigVector_t &, const ConfigVector_t &) const ConfigVector_t randomConfiguration_impl(const ConfigVector_t &, const ConfigVector_t &) const
{ {
ConfigVector_t result; ConfigVector_t result;
typedef Eigen::Map<Motion_t::Quaternion_t> QuaternionMap_t;
// Rotational part uniformRandom(QuaternionMap_t(result.data()));
const Scalar u1 = (Scalar)rand() / RAND_MAX;
const Scalar u2 = (Scalar)rand() / RAND_MAX;
const Scalar u3 = (Scalar)rand() / RAND_MAX;
const Scalar mult1 = sqrt (1-u1);
const Scalar mult2 = sqrt (u1);
Scalar s2,c2; SINCOS(2.*PI*u2,&s2,&c2);
Scalar s3,c3; SINCOS(2.*PI*u3,&s3,&c3);
result << mult1 * s2,
mult1 * c2,
mult2 * s3,
mult2 * c3;
return result; return result;
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment