Skip to content
Snippets Groups Projects
Unverified Commit ef20b0c7 authored by stonneau's avatar stonneau Committed by GitHub
Browse files

Merge pull request #4 from pFernbach/master

DeCasteljau and Curve splitting 
parents 08746e77 e201b5f2
No related branches found
No related tags found
No related merge requests found
......@@ -258,6 +258,82 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
const t_point_t& waypoints() const {return pts_;}
/**
* @brief evalDeCasteljau evaluate the curve value at time t using deCasteljau algorithm
* @param t unNormalized time
* @return the point at time t
*/
point_t evalDeCasteljau(const Numeric T) const {
// normalize time :
const Numeric t = T/T_;
t_point_t pts = deCasteljauReduction(waypoints(),t);
while(pts.size() > 1){
pts = deCasteljauReduction(pts,t);
}
return pts[0]*mult_T_;
}
t_point_t deCasteljauReduction(const Numeric t) const{
return deCasteljauReduction(waypoints(),t/T_);
}
/**
* @brief deCasteljauReduction compute the de Casteljau's reduction of the given list of points at time t
* @param pts the original list of points
* @param t the NORMALIZED time
* @return the reduced list of point (size of pts - 1)
*/
t_point_t deCasteljauReduction(const t_point_t& pts, const Numeric t) const{
if(t < 0 || t > 1)
throw std::out_of_range("In deCasteljau reduction : t is not in [0;1]");
if(pts.size() == 1)
return pts;
t_point_t new_pts;
for(cit_point_t cit = pts.begin() ; cit != (pts.end() - 1) ; ++cit){
new_pts.push_back((1-t) * (*cit) + t*(*(cit+1)));
}
return new_pts;
}
/**
* @brief split split the curve in 2 at time t
* @param t
* @return
*/
std::pair<bezier_curve_t,bezier_curve_t> split(const Numeric T){
t_point_t wps_first(size_),wps_second(size_);
const double t = T/T_;
wps_first[0] = pts_.front();
wps_second[degree_] = pts_.back();
t_point_t casteljau_pts = waypoints();
size_t id = 1;
while(casteljau_pts.size() > 1){
casteljau_pts = deCasteljauReduction(casteljau_pts,t);
wps_first[id] = casteljau_pts.front();
wps_second[degree_-id] = casteljau_pts.back();
++id;
}
bezier_curve_t c_first(wps_first.begin(), wps_first.end(), T,mult_T_);
bezier_curve_t c_second(wps_second.begin(), wps_second.end(), T_-T,mult_T_);
return std::make_pair(c_first,c_second);
}
bezier_curve_t extract(const Numeric t1, const Numeric t2){
if(t1 < 0. || t1 > T_ || t2 < 0. || t2 > T_)
throw std::out_of_range("In Extract curve : times out of bounds");
if(t1 == 0.)
return split(t2).first;
if(t2 == T_)
return split(t1).second;
std::pair<bezier_curve_t,bezier_curve_t> c_split = this->split(t1);
return c_split.second->split(t2).first;
}
private:
template<typename In>
t_point_t add_constraints(In PointsBegin, In PointsEnd, const curve_constraints_t& constraints)
......
......@@ -255,7 +255,7 @@ void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/)
// 3d curve
bezier_curve_t cf(params.begin(), params.end());
clock_t s0,e0,s1,e1,s2,e2;
clock_t s0,e0,s1,e1,s2,e2,s3,e3;
s0 = clock();
for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit)
{
......@@ -277,12 +277,18 @@ void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/)
}
e2 = clock();
std::cout << "time for analytical eval " << double(e0 - s0) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for bernstein eval " << double(e1 - s1) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for horner eval " << double(e2 - s2) / CLOCKS_PER_SEC << std::endl;
s3 = clock();
for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit)
{
cf.evalDeCasteljau(*cit);
}
e3 = clock();
std::cout << "time for analytical eval " << double(e0 - s0) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for bernstein eval " << double(e1 - s1) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for horner eval " << double(e2 - s2) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for deCasteljau eval " << double(e3 - s3) / CLOCKS_PER_SEC << std::endl;
std::cout << "now with high order polynom " << std::endl;
......@@ -317,10 +323,19 @@ void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/)
}
e0 = clock();
s3 = clock();
for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit)
{
cf2.evalDeCasteljau(*cit);
}
e3 = clock();
std::cout << "time for analytical eval " << double(e0 - s0) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for bernstein eval " << double(e1 - s1) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for horner eval " << double(e2 - s2) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for analytical eval " << double(e0 - s0) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for bernstein eval " << double(e1 - s1) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for horner eval " << double(e2 - s2) / CLOCKS_PER_SEC << std::endl;
std::cout << "time for deCasteljau eval " << double(e3 - s3) / CLOCKS_PER_SEC << std::endl;
}
......@@ -768,6 +783,143 @@ void TestReparametrization(bool& error)
}
}
point_t randomPoint(const double min, const double max ){
point_t p;
for(size_t i = 0 ; i < 3 ; ++i)
p[i] = (rand()/(double)RAND_MAX ) * (max-min) + min;
return p;
}
void BezierEvalDeCasteljau(bool& error){
using namespace std;
std::vector<double> values;
for (int i =0; i < 100000; ++i)
values.push_back(rand()/RAND_MAX);
//first compare regular evaluation (low dim pol)
point_t a(1,2,3);
point_t b(2,3,4);
point_t c(3,4,5);
point_t d(3,6,7);
point_t e(3,61,7);
point_t f(3,56,7);
point_t g(3,36,7);
point_t h(43,6,7);
point_t i(3,6,77);
std::vector<point_t> params;
params.push_back(a);
params.push_back(b);
params.push_back(c);
// 3d curve
bezier_curve_t cf(params.begin(), params.end());
for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit)
{
if(cf.evalDeCasteljau(*cit) != cf(*cit)){
error = true;
std::cout<<" De Casteljau evaluation did not return the same value as analytical"<<std::endl;
}
}
params.push_back(d);
params.push_back(e);
params.push_back(f);
params.push_back(g);
params.push_back(h);
params.push_back(i);
bezier_curve_t cf2(params.begin(), params.end());
for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit)
{
if(cf.evalDeCasteljau(*cit) != cf(*cit)){
error = true;
std::cout<<" De Casteljau evaluation did not return the same value as analytical"<<std::endl;
}
}
}
/**
* @brief BezierSplitCurve test the 'split' method of bezier curve
* @param error
*/
void BezierSplitCurve(bool& error){
// test for degree 5
int n = 5;
double t_min = 0.2;
double t_max = 10;
for(size_t i = 0 ; i < 1 ; ++i){
// build a random curve and split it at random time :
//std::cout<<"build a random curve"<<std::endl;
point_t a;
std::vector<point_t> wps;
for(size_t j = 0 ; j <= n ; ++j){
wps.push_back(randomPoint(-10.,10.));
}
double t = (rand()/(double)RAND_MAX )*(t_max-t_min) + t_min;
double ts = (rand()/(double)RAND_MAX )*(t);
bezier_curve_t c(wps.begin(), wps.end(),t);
std::pair<bezier_curve_t,bezier_curve_t> cs = c.split(ts);
//std::cout<<"split curve of duration "<<t<<" at "<<ts<<std::endl;
// test on splitted curves :
if(! ((c.degree_ == cs.first.degree_) && (c.degree_ == cs.second.degree_) )){
error = true;
std::cout<<" Degree of the splitted curve are not the same as the original curve"<<std::endl;
}
if(c.max() != (cs.first.max() + cs.second.max())){
error = true;
std::cout<<"Duration of the splitted curve doesn't correspond to the original"<<std::endl;
}
if(c(0) != cs.first(0)){
error = true;
std::cout<<"initial point of the splitted curve doesn't correspond to the original"<<std::endl;
}
if(c(t) != cs.second(cs.second.max())){
error = true;
std::cout<<"final point of the splitted curve doesn't correspond to the original"<<std::endl;
}
if(cs.first.max() != ts){
error = true;
std::cout<<"timing of the splitted curve doesn't correspond to the original"<<std::endl;
}
if(cs.first(ts) != cs.second(0.)){
error = true;
std::cout<<"splitting point of the splitted curve doesn't correspond to the original"<<std::endl;
}
// check along curve :
double ti = 0.;
while(ti <= ts){
if((cs.first(ti) - c(ti)).norm() > 1e-14){
error = true;
std::cout<<"first splitted curve and original curve doesn't correspond, error = "<<cs.first(ti) - c(ti) <<std::endl;
}
ti += 0.01;
}
while(ti <= t){
if((cs.second(ti-ts) - c(ti)).norm() > 1e-14){
error = true;
std::cout<<"second splitted curve and original curve doesn't correspond, error = "<<cs.second(ti-ts) - c(ti)<<std::endl;
}
ti += 0.01;
}
}
}
int main(int /*argc*/, char** /*argv[]*/)
{
std::cout << "performing tests... \n";
......@@ -789,7 +941,9 @@ int main(int /*argc*/, char** /*argv[]*/)
BezierCurveTestCompareHornerAndBernstein(error);
BezierDerivativeCurveTimeReparametrizationTest(error);
BezierToPolynomConversionTest(error);
if(error)
BezierEvalDeCasteljau(error);
BezierSplitCurve(error);
if(error)
{
std::cout << "There were some errors\n";
return -1;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment