Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
N
ndcurves
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
loco-3d
ndcurves
Commits
ef20b0c7
Unverified
Commit
ef20b0c7
authored
6 years ago
by
stonneau
Committed by
GitHub
6 years ago
Browse files
Options
Downloads
Plain Diff
Merge pull request
#4
from pFernbach/master
DeCasteljau and Curve splitting
parents
08746e77
e201b5f2
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
include/spline/bezier_curve.h
+76
-0
76 additions, 0 deletions
include/spline/bezier_curve.h
src/tests/spline_test/Main.cpp
+163
-9
163 additions, 9 deletions
src/tests/spline_test/Main.cpp
with
239 additions
and
9 deletions
include/spline/bezier_curve.h
+
76
−
0
View file @
ef20b0c7
...
...
@@ -258,6 +258,82 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
const
t_point_t
&
waypoints
()
const
{
return
pts_
;}
/**
* @brief evalDeCasteljau evaluate the curve value at time t using deCasteljau algorithm
* @param t unNormalized time
* @return the point at time t
*/
point_t
evalDeCasteljau
(
const
Numeric
T
)
const
{
// normalize time :
const
Numeric
t
=
T
/
T_
;
t_point_t
pts
=
deCasteljauReduction
(
waypoints
(),
t
);
while
(
pts
.
size
()
>
1
){
pts
=
deCasteljauReduction
(
pts
,
t
);
}
return
pts
[
0
]
*
mult_T_
;
}
t_point_t
deCasteljauReduction
(
const
Numeric
t
)
const
{
return
deCasteljauReduction
(
waypoints
(),
t
/
T_
);
}
/**
* @brief deCasteljauReduction compute the de Casteljau's reduction of the given list of points at time t
* @param pts the original list of points
* @param t the NORMALIZED time
* @return the reduced list of point (size of pts - 1)
*/
t_point_t
deCasteljauReduction
(
const
t_point_t
&
pts
,
const
Numeric
t
)
const
{
if
(
t
<
0
||
t
>
1
)
throw
std
::
out_of_range
(
"In deCasteljau reduction : t is not in [0;1]"
);
if
(
pts
.
size
()
==
1
)
return
pts
;
t_point_t
new_pts
;
for
(
cit_point_t
cit
=
pts
.
begin
()
;
cit
!=
(
pts
.
end
()
-
1
)
;
++
cit
){
new_pts
.
push_back
((
1
-
t
)
*
(
*
cit
)
+
t
*
(
*
(
cit
+
1
)));
}
return
new_pts
;
}
/**
* @brief split split the curve in 2 at time t
* @param t
* @return
*/
std
::
pair
<
bezier_curve_t
,
bezier_curve_t
>
split
(
const
Numeric
T
){
t_point_t
wps_first
(
size_
),
wps_second
(
size_
);
const
double
t
=
T
/
T_
;
wps_first
[
0
]
=
pts_
.
front
();
wps_second
[
degree_
]
=
pts_
.
back
();
t_point_t
casteljau_pts
=
waypoints
();
size_t
id
=
1
;
while
(
casteljau_pts
.
size
()
>
1
){
casteljau_pts
=
deCasteljauReduction
(
casteljau_pts
,
t
);
wps_first
[
id
]
=
casteljau_pts
.
front
();
wps_second
[
degree_
-
id
]
=
casteljau_pts
.
back
();
++
id
;
}
bezier_curve_t
c_first
(
wps_first
.
begin
(),
wps_first
.
end
(),
T
,
mult_T_
);
bezier_curve_t
c_second
(
wps_second
.
begin
(),
wps_second
.
end
(),
T_
-
T
,
mult_T_
);
return
std
::
make_pair
(
c_first
,
c_second
);
}
bezier_curve_t
extract
(
const
Numeric
t1
,
const
Numeric
t2
){
if
(
t1
<
0.
||
t1
>
T_
||
t2
<
0.
||
t2
>
T_
)
throw
std
::
out_of_range
(
"In Extract curve : times out of bounds"
);
if
(
t1
==
0.
)
return
split
(
t2
).
first
;
if
(
t2
==
T_
)
return
split
(
t1
).
second
;
std
::
pair
<
bezier_curve_t
,
bezier_curve_t
>
c_split
=
this
->
split
(
t1
);
return
c_split
.
second
->
split
(
t2
).
first
;
}
private
:
template
<
typename
In
>
t_point_t
add_constraints
(
In
PointsBegin
,
In
PointsEnd
,
const
curve_constraints_t
&
constraints
)
...
...
This diff is collapsed.
Click to expand it.
src/tests/spline_test/Main.cpp
+
163
−
9
View file @
ef20b0c7
...
...
@@ -255,7 +255,7 @@ void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/)
// 3d curve
bezier_curve_t
cf
(
params
.
begin
(),
params
.
end
());
clock_t
s0
,
e0
,
s1
,
e1
,
s2
,
e2
;
clock_t
s0
,
e0
,
s1
,
e1
,
s2
,
e2
,
s3
,
e3
;
s0
=
clock
();
for
(
std
::
vector
<
double
>::
const_iterator
cit
=
values
.
begin
();
cit
!=
values
.
end
();
++
cit
)
{
...
...
@@ -277,12 +277,18 @@ void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/)
}
e2
=
clock
();
std
::
cout
<<
"time for analytical eval "
<<
double
(
e0
-
s0
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for bernstein eval "
<<
double
(
e1
-
s1
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for horner eval "
<<
double
(
e2
-
s2
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
s3
=
clock
();
for
(
std
::
vector
<
double
>::
const_iterator
cit
=
values
.
begin
();
cit
!=
values
.
end
();
++
cit
)
{
cf
.
evalDeCasteljau
(
*
cit
);
}
e3
=
clock
();
std
::
cout
<<
"time for analytical eval "
<<
double
(
e0
-
s0
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for bernstein eval "
<<
double
(
e1
-
s1
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for horner eval "
<<
double
(
e2
-
s2
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for deCasteljau eval "
<<
double
(
e3
-
s3
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"now with high order polynom "
<<
std
::
endl
;
...
...
@@ -317,10 +323,19 @@ void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/)
}
e0
=
clock
();
s3
=
clock
();
for
(
std
::
vector
<
double
>::
const_iterator
cit
=
values
.
begin
();
cit
!=
values
.
end
();
++
cit
)
{
cf2
.
evalDeCasteljau
(
*
cit
);
}
e3
=
clock
();
std
::
cout
<<
"time for analytical eval "
<<
double
(
e0
-
s0
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for bernstein eval "
<<
double
(
e1
-
s1
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for horner eval "
<<
double
(
e2
-
s2
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for analytical eval "
<<
double
(
e0
-
s0
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for bernstein eval "
<<
double
(
e1
-
s1
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for horner eval "
<<
double
(
e2
-
s2
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
std
::
cout
<<
"time for deCasteljau eval "
<<
double
(
e3
-
s3
)
/
CLOCKS_PER_SEC
<<
std
::
endl
;
}
...
...
@@ -768,6 +783,143 @@ void TestReparametrization(bool& error)
}
}
point_t
randomPoint
(
const
double
min
,
const
double
max
){
point_t
p
;
for
(
size_t
i
=
0
;
i
<
3
;
++
i
)
p
[
i
]
=
(
rand
()
/
(
double
)
RAND_MAX
)
*
(
max
-
min
)
+
min
;
return
p
;
}
void
BezierEvalDeCasteljau
(
bool
&
error
){
using
namespace
std
;
std
::
vector
<
double
>
values
;
for
(
int
i
=
0
;
i
<
100000
;
++
i
)
values
.
push_back
(
rand
()
/
RAND_MAX
);
//first compare regular evaluation (low dim pol)
point_t
a
(
1
,
2
,
3
);
point_t
b
(
2
,
3
,
4
);
point_t
c
(
3
,
4
,
5
);
point_t
d
(
3
,
6
,
7
);
point_t
e
(
3
,
61
,
7
);
point_t
f
(
3
,
56
,
7
);
point_t
g
(
3
,
36
,
7
);
point_t
h
(
43
,
6
,
7
);
point_t
i
(
3
,
6
,
77
);
std
::
vector
<
point_t
>
params
;
params
.
push_back
(
a
);
params
.
push_back
(
b
);
params
.
push_back
(
c
);
// 3d curve
bezier_curve_t
cf
(
params
.
begin
(),
params
.
end
());
for
(
std
::
vector
<
double
>::
const_iterator
cit
=
values
.
begin
();
cit
!=
values
.
end
();
++
cit
)
{
if
(
cf
.
evalDeCasteljau
(
*
cit
)
!=
cf
(
*
cit
)){
error
=
true
;
std
::
cout
<<
" De Casteljau evaluation did not return the same value as analytical"
<<
std
::
endl
;
}
}
params
.
push_back
(
d
);
params
.
push_back
(
e
);
params
.
push_back
(
f
);
params
.
push_back
(
g
);
params
.
push_back
(
h
);
params
.
push_back
(
i
);
bezier_curve_t
cf2
(
params
.
begin
(),
params
.
end
());
for
(
std
::
vector
<
double
>::
const_iterator
cit
=
values
.
begin
();
cit
!=
values
.
end
();
++
cit
)
{
if
(
cf
.
evalDeCasteljau
(
*
cit
)
!=
cf
(
*
cit
)){
error
=
true
;
std
::
cout
<<
" De Casteljau evaluation did not return the same value as analytical"
<<
std
::
endl
;
}
}
}
/**
* @brief BezierSplitCurve test the 'split' method of bezier curve
* @param error
*/
void
BezierSplitCurve
(
bool
&
error
){
// test for degree 5
int
n
=
5
;
double
t_min
=
0.2
;
double
t_max
=
10
;
for
(
size_t
i
=
0
;
i
<
1
;
++
i
){
// build a random curve and split it at random time :
//std::cout<<"build a random curve"<<std::endl;
point_t
a
;
std
::
vector
<
point_t
>
wps
;
for
(
size_t
j
=
0
;
j
<=
n
;
++
j
){
wps
.
push_back
(
randomPoint
(
-
10.
,
10.
));
}
double
t
=
(
rand
()
/
(
double
)
RAND_MAX
)
*
(
t_max
-
t_min
)
+
t_min
;
double
ts
=
(
rand
()
/
(
double
)
RAND_MAX
)
*
(
t
);
bezier_curve_t
c
(
wps
.
begin
(),
wps
.
end
(),
t
);
std
::
pair
<
bezier_curve_t
,
bezier_curve_t
>
cs
=
c
.
split
(
ts
);
//std::cout<<"split curve of duration "<<t<<" at "<<ts<<std::endl;
// test on splitted curves :
if
(
!
((
c
.
degree_
==
cs
.
first
.
degree_
)
&&
(
c
.
degree_
==
cs
.
second
.
degree_
)
)){
error
=
true
;
std
::
cout
<<
" Degree of the splitted curve are not the same as the original curve"
<<
std
::
endl
;
}
if
(
c
.
max
()
!=
(
cs
.
first
.
max
()
+
cs
.
second
.
max
())){
error
=
true
;
std
::
cout
<<
"Duration of the splitted curve doesn't correspond to the original"
<<
std
::
endl
;
}
if
(
c
(
0
)
!=
cs
.
first
(
0
)){
error
=
true
;
std
::
cout
<<
"initial point of the splitted curve doesn't correspond to the original"
<<
std
::
endl
;
}
if
(
c
(
t
)
!=
cs
.
second
(
cs
.
second
.
max
())){
error
=
true
;
std
::
cout
<<
"final point of the splitted curve doesn't correspond to the original"
<<
std
::
endl
;
}
if
(
cs
.
first
.
max
()
!=
ts
){
error
=
true
;
std
::
cout
<<
"timing of the splitted curve doesn't correspond to the original"
<<
std
::
endl
;
}
if
(
cs
.
first
(
ts
)
!=
cs
.
second
(
0.
)){
error
=
true
;
std
::
cout
<<
"splitting point of the splitted curve doesn't correspond to the original"
<<
std
::
endl
;
}
// check along curve :
double
ti
=
0.
;
while
(
ti
<=
ts
){
if
((
cs
.
first
(
ti
)
-
c
(
ti
)).
norm
()
>
1e-14
){
error
=
true
;
std
::
cout
<<
"first splitted curve and original curve doesn't correspond, error = "
<<
cs
.
first
(
ti
)
-
c
(
ti
)
<<
std
::
endl
;
}
ti
+=
0.01
;
}
while
(
ti
<=
t
){
if
((
cs
.
second
(
ti
-
ts
)
-
c
(
ti
)).
norm
()
>
1e-14
){
error
=
true
;
std
::
cout
<<
"second splitted curve and original curve doesn't correspond, error = "
<<
cs
.
second
(
ti
-
ts
)
-
c
(
ti
)
<<
std
::
endl
;
}
ti
+=
0.01
;
}
}
}
int
main
(
int
/*argc*/
,
char
**
/*argv[]*/
)
{
std
::
cout
<<
"performing tests...
\n
"
;
...
...
@@ -789,7 +941,9 @@ int main(int /*argc*/, char** /*argv[]*/)
BezierCurveTestCompareHornerAndBernstein
(
error
);
BezierDerivativeCurveTimeReparametrizationTest
(
error
);
BezierToPolynomConversionTest
(
error
);
if
(
error
)
BezierEvalDeCasteljau
(
error
);
BezierSplitCurve
(
error
);
if
(
error
)
{
std
::
cout
<<
"There were some errors
\n
"
;
return
-
1
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment