Newer
Older
#include "pinocchio/algorithm/rnea.hpp"
#include "pinocchio/algorithm/kinematics.hpp"
#include "pinocchio/algorithm/center-of-mass.hpp"
using namespace PatternGeneratorJRL;
class Joint_shortname : public boost::static_visitor<std::string>
{
public:
template<typename D>
std::string operator()(const se3::JointModelBase<D> & ) const
{ return D::shortname(); }
static std::string run( const se3::JointModelVariant & jmodel)
{ return boost::apply_visitor( Joint_shortname(), jmodel ); }
};
inline std::string shortname(const se3::JointModelVariant & jmodel)
{ return Joint_shortname::run(jmodel); }
// all the pointor are set to 0
m_robotModel = 0 ;
m_robotData = 0 ;
m_robotDataInInitialePose = 0 ;
// init quaternion as unit zero rotation
m_quat = Eigen::Quaterniond(
Eigen::AngleAxisd(0.0, Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(0.0, Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(0.0, Eigen::Vector3d::UnitX()) ) ;
m_q.resize(50,1);
m_q(3)=m_quat.x();
m_q(4)=m_quat.y();
m_q(5)=m_quat.z();
m_q(6)=m_quat.w();
m_v.resize(50,1);
m_a.resize(50,1);
m_tau.resize(50,1);
m_q.fill(0.0);
m_v.fill(0.0);
m_a.fill(0.0);
m_tau.fill(0.0);
MAL_VECTOR_RESIZE(m_qmal,50);
MAL_VECTOR_RESIZE(m_vmal,50);
MAL_VECTOR_RESIZE(m_amal,50);
MAL_VECTOR_FILL(m_qmal,0.0);
MAL_VECTOR_FILL(m_vmal,0.0);
MAL_VECTOR_FILL(m_amal,0.0);
m_f.fill(0.0);
m_n.fill(0.0);
m_com.fill(0.0);
m_boolModel = false ;
m_boolData = false ;
m_boolLeftFoot = false ;
m_boolRightFoot = false ;
m_isLegInverseKinematic = false ;
m_isArmInverseKinematic = false ;
m_chest = 0 ;
m_waist = 0 ;
m_leftShoulder = 0 ;
m_rightShoulder = 0 ;
m_leftWrist = 0 ;
m_rightWrist = 0;
m_mass = 0.0 ;
memset(&m_leftFoot,0,sizeof(m_leftFoot));
memset(&m_rightFoot,0,sizeof(m_rightFoot));
m_femurLength = 0.0 ;
m_tibiaLengthZ = 0.0 ;
m_tibiaLengthY = 0.0 ;
}
PinocchioRobot::~PinocchioRobot()
{
if (m_robotDataInInitialePose != 0)
{
delete m_robotDataInInitialePose ;
m_robotDataInInitialePose = 0 ;
}
}
bool PinocchioRobot::checkModel(se3::Model * robotModel)
{
if(!robotModel->existBodyName("r_ankle"))
{
m_boolModel=false;
const std::string exception_message ("r_ankle is not a valid body name");
throw std::invalid_argument(exception_message);
return false ;
}
if(!robotModel->existBodyName("l_ankle"))
{
m_boolModel=false;
const std::string exception_message ("l_ankle is not a valid body name");
throw std::invalid_argument(exception_message);
return false ;
}
if(!robotModel->existBodyName("BODY"))
{
m_boolModel=false;
const std::string exception_message ("BODY is not a valid body name");
throw std::invalid_argument(exception_message);
return false ;
}
if(!robotModel->existBodyName("torso"))
{
m_boolModel=false;
const std::string exception_message ("torso is not a valid body name");
throw std::invalid_argument(exception_message);
return false ;
}
if(!robotModel->existBodyName("r_wrist"))
{
m_boolModel=false;
const std::string exception_message ("r_wrist is not a valid body name");
throw std::invalid_argument(exception_message);
return false ;
}
if(!robotModel->existBodyName("l_wrist"))
{
const std::string exception_message ("l_wrist is not a valid body name");
throw std::invalid_argument(exception_message);
return false ;
}
return true ;
}
bool PinocchioRobot::initializeRobotModelAndData(se3::Model * robotModel,
se3::Data * robotData)
{
m_boolModel=checkModel(robotModel);
if(!m_boolModel)
return false ;
// initialize the model
///////////////////////
m_robotModel = robotModel;
// initialize the short cut for the joint ids
m_chest = m_robotModel->getBodyId("torso");
m_waist = m_robotModel->getBodyId("BODY");
m_leftFoot.associatedAnkle = m_robotModel->getBodyId("l_ankle");
m_rightFoot.associatedAnkle = m_robotModel->getBodyId("r_ankle");
m_leftWrist = m_robotModel->getBodyId("l_wrist");
m_rightWrist = m_robotModel->getBodyId("r_wrist");
DetectAutomaticallyShoulders();
// intialize the "initial pose" (q=[0]) data
m_robotDataInInitialePose = new se3::Data(*m_robotModel);
m_robotDataInInitialePose->v[0] = se3::Motion::Zero();
m_robotDataInInitialePose->a[0] = -m_robotModel->gravity;
m_q.resize(m_robotModel->nq,1);
m_q.fill(0.0);
m_q[6]= 1.0 ;
m_v.resize(m_robotModel->nv,1);
m_a.resize(m_robotModel->nv,1);
m_tau.resize(m_robotModel->nv,1);
se3::forwardKinematics(*m_robotModel,*m_robotDataInInitialePose,m_q);
MAL_VECTOR_RESIZE(m_qmal,m_robotModel->nv);
MAL_VECTOR_RESIZE(m_vmal,m_robotModel->nv);
MAL_VECTOR_RESIZE(m_amal,m_robotModel->nv);
MAL_VECTOR_FILL(m_qmal,0.0);
MAL_VECTOR_FILL(m_vmal,0.0);
MAL_VECTOR_FILL(m_amal,0.0);
for(unsigned i=0; i<m_robotModel->inertias.size() ; ++i)
{
m_mass += m_robotModel->inertias[i].mass();
}
// initialize the data
//////////////////////
if (robotData==0)
{
m_boolData = false ;
return false;
}
else
m_boolData=true;
m_robotData = robotData;
m_robotData->v[0] = se3::Motion::Zero();
m_robotData->a[0] = -m_robotModel->gravity;
if(testInverseKinematics())
initializeInverseKinematics();
bool PinocchioRobot::initializeLeftFoot(PRFoot leftFoot)
m_leftFoot = leftFoot ;
m_boolLeftFoot = true ;
return true ;
bool PinocchioRobot::initializeRightFoot(PRFoot rightFoot)
{
m_rightFoot = rightFoot ;
m_boolRightFoot = true ;
return true ;
}
bool PinocchioRobot::testInverseKinematics()
{
std::vector<se3::JointIndex> leftLeg =
jointsBetween(m_waist,m_leftFoot.associatedAnkle);
std::vector<se3::JointIndex> rightLeg =
jointsBetween(m_waist,m_rightFoot.associatedAnkle);
std::vector<se3::JointIndex> leftArm =
jointsBetween(m_chest,m_leftWrist);
std::vector<se3::JointIndex> rightArm =
jointsBetween(m_chest,m_rightWrist);
std::vector<std::string> leftLegJointName,rightLegJointName,
leftArmJointName,rightArmJointName;
leftLegJointName = {"JointModelFreeFlyer",
"JointModelRZ","JointModelRX","JointModelRY",
"JointModelRY","JointModelRY","JointModelRX"};
rightLegJointName = {"JointModelFreeFlyer",
"JointModelRZ", "JointModelRX", "JointModelRY",
"JointModelRY", "JointModelRY", "JointModelRX"};
leftArmJointName = {"JointModelRY", "JointModelRX", "JointModelRZ",
"JointModelRY", "JointModelRZ", "JointModelRY"};
rightArmJointName = {"JointModelRY", "JointModelRX", "JointModelRZ",
"JointModelRY", "JointModelRZ", "JointModelRY"};
m_isLegInverseKinematic = true ;
m_isArmInverseKinematic = true ;
for (unsigned i=0 ; i<leftLegJointName.size() ; ++i)
{
std::string shortName = boost::apply_visitor(Joint_shortname(),
m_robotModel->joints[leftLeg[i]]);
m_isLegInverseKinematic &= (shortName == leftLegJointName[i]);
}
for (unsigned i=0 ; i<rightLegJointName.size() ; ++i)
{
std::string shortName = boost::apply_visitor(Joint_shortname(),
m_robotModel->joints[rightLeg[i]]);
m_isLegInverseKinematic &= (shortName == rightLegJointName[i]);
}
for (unsigned i=0 ; i<leftArmJointName.size() ; ++i)
{
std::string shortName = boost::apply_visitor(Joint_shortname(),
m_robotModel->joints[leftArm[i]]);
m_isArmInverseKinematic &= (shortName == leftArmJointName[i]);
}
for (unsigned i=0 ; i<rightArmJointName.size() ; ++i)
{
std::string shortName = boost::apply_visitor(Joint_shortname(),
m_robotModel->joints[rightArm[i]]);
m_isArmInverseKinematic &= (shortName == rightArmJointName[i]);
return m_isLegInverseKinematic & m_isArmInverseKinematic;
}
void PinocchioRobot::initializeInverseKinematics()
{
std::vector<se3::JointIndex> leftLeg =
jointsBetween(m_waist,m_leftFoot.associatedAnkle);
std::vector<se3::JointIndex> rightLeg =
jointsBetween(m_waist,m_rightFoot.associatedAnkle);
MAL_S3_VECTOR_CLEAR(m_leftDt);
MAL_S3_VECTOR_CLEAR(m_rightDt);
se3::SE3 waist_M_leftHip , waist_M_rightHip ;
waist_M_leftHip = m_robotModel->jointPlacements[leftLeg[0]].act(
m_robotModel->jointPlacements[leftLeg[1]]).act(
m_robotModel->jointPlacements[leftLeg[2]]).act(
m_robotModel->jointPlacements[leftLeg[3]]);
waist_M_rightHip = m_robotModel->jointPlacements[rightLeg[0]].act(
m_robotModel->jointPlacements[rightLeg[1]]).act(
m_robotModel->jointPlacements[rightLeg[2]]).act(
m_robotModel->jointPlacements[rightLeg[3]]);
m_leftDt(0)=waist_M_leftHip.translation()(0);
m_leftDt(1)=waist_M_leftHip.translation()(1);
m_leftDt(2)=waist_M_leftHip.translation()(2);
m_rightDt(0)=waist_M_rightHip.translation()(0);
m_rightDt(1)=waist_M_rightHip.translation()(1);
m_rightDt(2)=waist_M_rightHip.translation()(2);
m_femurLength = m_robotModel->jointPlacements[rightLeg[4]]
m_tibiaLengthY =
std::abs(m_robotModel->jointPlacements[rightLeg[5]].translation()[1]);
m_tibiaLengthZ =
std::abs(m_robotModel->jointPlacements[rightLeg[5]].translation()[2]);
if(m_femurLength==0 || m_tibiaLengthZ==0)
m_isLegInverseKinematic=false;
void PinocchioRobot::computeForwardKinematics()
{
computeForwardKinematics(m_qmal);
}
void PinocchioRobot::computeForwardKinematics(MAL_VECTOR_TYPE(double) & q)
{
// euler to quaternion :
m_quat = Eigen::Quaterniond(
Eigen::AngleAxisd(q(5), Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(q(4), Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(q(3), Eigen::Vector3d::UnitX()) ) ;
// fill up m_q following the pinocchio standard : [pos quarternion DoFs]
for(unsigned i=0; i<3 ; ++i)
{
m_q(i) = q(i);
}
m_q(3) = m_quat.x() ;
m_q(4) = m_quat.y() ;
m_q(5) = m_quat.z() ;
m_q(6) = m_quat.w() ;
for(unsigned i=0; i<m_robotModel->nv-6 ; ++i)
{
m_q(7+i) = q(6+i);
}
se3::forwardKinematics(*m_robotModel,*m_robotData,m_q);
se3::centerOfMass(*m_robotModel,*m_robotData,m_q);
}
void PinocchioRobot::computeInverseDynamics()
{
PinocchioRobot::computeInverseDynamics(m_qmal,m_vmal,m_amal);
}
void PinocchioRobot::computeInverseDynamics(MAL_VECTOR_TYPE(double) & q,
MAL_VECTOR_TYPE(double) & v,
MAL_VECTOR_TYPE(double) & a)
{
// euler to quaternion :
m_quat = Eigen::Quaterniond(
Eigen::AngleAxisd(q(5), Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(q(4), Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(q(3), Eigen::Vector3d::UnitX()) ) ;
std::cout << m_quat.x() << " " << m_quat.y() << " " << m_quat.z() << " " << m_quat.w() << std::endl ;
std::cout << q(3) << " " << q(4) << " " << q(5) << std::endl ;
// fill up m_q following the pinocchio standard : [pos quarternion DoFs]
for(unsigned i=0; i<3 ; ++i)
{
m_q(i) = q(i);
}
m_q(3) = m_quat.x() ;
m_q(4) = m_quat.y() ;
m_q(5) = m_quat.z() ;
m_q(6) = m_quat.w() ;
for(unsigned i=0; i<m_robotModel->nv-6 ; ++i)
{
m_q(7+i) = q(6+i);
}
// fill up the velocity and acceleration vectors
for(unsigned i=0; i<m_robotModel->nv ; ++i)
{
m_v(i) = v(i);
m_a(i) = a(i);
}
// performing the inverse dynamics
m_tau = se3::rnea(*m_robotModel,*m_robotData,m_q,m_v,m_a);
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
}
std::vector<se3::JointIndex> PinocchioRobot::fromRootToIt(se3::JointIndex it)
{
std::vector<se3::JointIndex> fromRootToIt ;
fromRootToIt.clear();
se3::JointIndex i = it ;
while(i!=0)
{
fromRootToIt.insert(fromRootToIt.begin(),i);
i = m_robotModel->parents[i];
}
return fromRootToIt ;
}
std::vector<se3::JointIndex> PinocchioRobot::jointsBetween
( se3::JointIndex first, se3::JointIndex second)
{
std::vector<se3::JointIndex> fromRootToFirst = fromRootToIt(first);
std::vector<se3::JointIndex> fromRootToSecond = fromRootToIt(second);
std::vector<se3::JointIndex> out ;
out.clear();
se3::JointIndex lastCommonRank = 0 ;
se3::JointIndex minChainLength =
fromRootToFirst.size() < fromRootToSecond.size()
? fromRootToFirst.size() : fromRootToSecond.size() ;
for(unsigned k=1 ; k<minChainLength ; ++k)
{
if(fromRootToFirst[k] == fromRootToSecond[k])
++lastCommonRank;
}
for(unsigned k=fromRootToFirst.size()-1; k>lastCommonRank ; --k)
{
out.push_back(fromRootToFirst[k]);
}
if(lastCommonRank==0)
{
out.push_back(fromRootToSecond[0]);
}
for(unsigned k=lastCommonRank+1 ; k<fromRootToSecond.size() ; ++k)
{
out.push_back(fromRootToSecond[k]);
}
return out ;
}
///////////////////////////////////////////////////////////////////////////////
bool PinocchioRobot::
ComputeSpecializedInverseKinematics(
const se3::JointIndex &jointRoot,
const se3::JointIndex &jointEnd,
const MAL_S4x4_MATRIX_TYPE(double) & jointRootPosition,
const MAL_S4x4_MATRIX_TYPE(double) & jointEndPosition,
MAL_VECTOR_TYPE(double) &q )
{
MAL_VECTOR_FILL(q,0.0);
/*! Try to find out which kinematics chain the user
send to the method.*/
if (jointRoot==m_waist)
{
if(!m_isLegInverseKinematic)
return false ;
/* Consider here the legs. */
if (jointEnd==m_leftFoot.associatedAnkle)
{
getWaistFootKinematics(jointRootPosition, jointEndPosition,
q, m_leftDt);
return true;
}
else if (jointEnd==m_rightFoot.associatedAnkle)
{
getWaistFootKinematics(jointRootPosition, jointEndPosition,
q, m_rightDt);
}else
{
return false ;
if(!m_isArmInverseKinematic)
return false ;
if ( (m_leftShoulder==0) || (m_rightShoulder==0) )
DetectAutomaticallyShoulders();
/* Here consider the arms */
if (jointRoot==m_leftShoulder && jointEnd==m_leftWrist)
getShoulderWristKinematics(jointRootPosition,jointEndPosition,q,1);
return true;
if (jointRoot==m_rightShoulder && jointEnd==m_rightWrist)
getShoulderWristKinematics(jointRootPosition,jointEndPosition,q,-1);
return true;
}
}
return false;
}
void PinocchioRobot::getWaistFootKinematics(const matrix4d & jointRootPosition,
const matrix4d & jointEndPosition,
vectorN &q,
vector3d Dt)
{
double _epsilon=1.0e-6;
// definition des variables relatif au design du robot
double A = m_femurLength;
double B = m_tibiaLengthZ;
//double C = 0.0;
double c5 = 0.0;
double q6a = 0.0;
//vector3d r;
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/* Build sub-matrices */
matrix3d Foot_R,Body_R;
vector3d Foot_P,Body_P;
for(unsigned int i=0;i<3;i++)
{
for(unsigned int j=0;j<3;j++)
{
MAL_S3x3_MATRIX_ACCESS_I_J(Body_R,i,j) =
MAL_S4x4_MATRIX_ACCESS_I_J(jointRootPosition,i,j);
MAL_S3x3_MATRIX_ACCESS_I_J(Foot_R,i,j) =
MAL_S4x4_MATRIX_ACCESS_I_J(jointEndPosition,i,j);
}
Body_P(i) = MAL_S4x4_MATRIX_ACCESS_I_J(jointRootPosition,i,3);
Foot_P(i) = MAL_S4x4_MATRIX_ACCESS_I_J(jointEndPosition,i,3);
}
matrix3d Foot_Rt;
MAL_S3x3_TRANSPOSE_A_in_At(Foot_R,Foot_Rt);
// Initialisation of q
if (MAL_VECTOR_SIZE(q)!=6)
MAL_VECTOR_RESIZE(q,6);
for(unsigned int i=0;i<6;i++)
q(i)=0.0;
// if Dt(1)<0.0 then Opp=1.0 else Opp=-1.0
double OppSignOfDtY = Dt(1) < 0.0 ? 1.0 : -1.0;
vector3d d2,d3;
d2 = Body_P + Body_R * Dt;
d3 = d2 - Foot_P;
double l0 = sqrt(d3(0)*d3(0)+d3(1)*d3(1)+d3(2)*d3(2)
- m_tibiaLengthY*m_tibiaLengthY);
c5 = 0.5 * (l0*l0-A*A-B*B) / (A*B);
if (c5 > 1.0-_epsilon)
{
q[3] = 0.0;
}
if (c5 < -1.0+_epsilon)
{
q[3] = M_PI;
}
if (c5 >= -1.0+_epsilon && c5 <= 1.0-_epsilon)
{
q[3] = acos(c5);
}
vector3d r3;
r3 = Foot_Rt * d3;
q6a = asin((A/l0)*sin(M_PI- q[3]));
double l3 = sqrt(r3(1)*r3(1) + r3(2)*r3(2));
double l4 = sqrt(l3*l3 - m_tibiaLengthY*m_tibiaLengthY);
double phi = atan2(r3(0), l4);
q[4] = -phi - q6a;
double psi1 = atan2(r3(1), r3(2)) * OppSignOfDtY;
double psi2 = 0.5*M_PI - psi1;
double psi3 = atan2(l4, m_tibiaLengthY);
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
q[5] = (psi3 - psi2) * OppSignOfDtY;
if (q[5] > 0.5*M_PI)
{
q[5] -= M_PI;
}
else if (q[5] < -0.5*M_PI)
{
q[5] += M_PI;
}
matrix3d R;
matrix3d BRt;
MAL_S3x3_TRANSPOSE_A_in_At(Body_R,BRt);
matrix3d Rroll;
double c = cos(q[5]);
double s = sin(q[5]);
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,0,0) = 1.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,0,1) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,0,2) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,1,0) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,1,1) = c;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,1,2) = s;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,2,0) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,2,1) = -s;
MAL_S3x3_MATRIX_ACCESS_I_J(Rroll,2,2) = c;
matrix3d Rpitch;
c = cos(q[4]+q[3]);
s = sin(q[4]+q[3]);
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,0,0) = c;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,0,1) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,0,2) = -s;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,1,0) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,1,1) = 1.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,1,2) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,2,0) = s;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,2,1) = 0.0;
MAL_S3x3_MATRIX_ACCESS_I_J(Rpitch,2,2) = c;
R = BRt * Foot_R * Rroll * Rpitch;
q[0] = atan2(-R(0,1),R(1,1));
double cz = cos(q[0]);
double sz = sin(q[0]);
q[1] = atan2(R(2,1), -R(0,1)*sz+R(1,1)*cz);
q[2] = atan2( -R(2,0), R(2,2));
}
double PinocchioRobot::ComputeXmax(double & Z)
{
double A=0.25,
B=0.25;
double Xmax;
if (Z<0.0)
Z = 2*A*cos(15*M_PI/180.0);
Xmax = sqrt(A*A - (Z - B)*(Z-B));
return Xmax;
}
void PinocchioRobot::getShoulderWristKinematics(const matrix4d & jointRootPosition,
const matrix4d & jointEndPosition,
vectorN &q,
int side)
{
// Initialisation of q
if (MAL_VECTOR_SIZE(q)!=6)
MAL_VECTOR_RESIZE(q,6);
double Alpha,Beta;
for(unsigned int i=0;i<6;i++)
q(i)=0.0;
double X = MAL_S4x4_MATRIX_ACCESS_I_J(jointEndPosition,0,3)
- MAL_S4x4_MATRIX_ACCESS_I_J(jointRootPosition,0,3);
double Z = MAL_S4x4_MATRIX_ACCESS_I_J(jointEndPosition,2,3)
- MAL_S4x4_MATRIX_ACCESS_I_J(jointRootPosition,2,3);
double Xmax = ComputeXmax(Z);
X = X*Xmax;
double A=0.25, B=0.25; //UpperArmLength ForeArmLength
double C=0.0,Gamma=0.0,Theta=0.0;
C = sqrt(X*X+Z*Z);
Beta = acos((A*A+B*B-C*C)/(2*A*B))- M_PI;
Gamma = asin((B*sin(M_PI+Beta))/C);
Theta = atan2(X,Z);
Alpha = Gamma - Theta;
// Fill in the joint values.
q(0)= Alpha;
q(1)= 10.0*M_PI/180.0;
q(2)= 0.0;
q(3)= Beta;
q(4)= 0.0;
q(5)= 0.0;
if (side==-1)
q(1) = -q(1);
}
void PinocchioRobot::DetectAutomaticallyShoulders()
{
DetectAutomaticallyOneShoulder(m_leftWrist,m_leftShoulder);
DetectAutomaticallyOneShoulder(m_rightWrist,m_rightShoulder);
}
void PinocchioRobot::DetectAutomaticallyOneShoulder(
se3::JointIndex & aShoulder)
{
std::vector<se3::JointIndex>FromRootToJoint;
FromRootToJoint.clear();
std::vector<se3::JointIndex>::iterator itJoint = FromRootToJoint.begin();
bool found=false;
while(itJoint!=FromRootToJoint.end())
{
std::vector<se3::JointIndex>::iterator current = itJoint;
if (*current==m_chest)
found=true;
else
{
if (found)
{
aShoulder = *current;
return;
}
}
itJoint++;
}
}