Skip to content
Snippets Groups Projects
waypoints_c0_dc0_dc1_c1.hh 5.68 KiB
/*
 * Copyright 2018, LAAS-CNRS
 * Author: Pierre Fernbach
 */

#ifndef BEZIER_COM_TRAJ_C0DC0D1C1_H
#define BEZIER_COM_TRAJ_C0DC0D1C1_H

#include <hpp/bezier-com-traj/data.hh>

namespace bezier_com_traj {
namespace c0_dc0_dc1_c1 {

static const ConstraintFlag flag = INIT_POS | INIT_VEL | END_POS | END_VEL;

/// ### EQUATION FOR CONSTRAINTS ON INIT AND FINAL POSITION AND VELOCITY (DEGREE
/// = 4)
/** @brief evaluateCurveAtTime compute the expression of the point on the curve
 * at t, defined by the waypoint pi and one free waypoint (x)
 * @param pi constant waypoints of the curve, assume p0 p1 x p2 p3
 * @param t param (normalized !)
 * @return the expression of the waypoint such that wp.first . x + wp.second =
 * point on curve
 */
inline coefs_t evaluateCurveAtTime(const std::vector<point_t>& pi, double t) {
  coefs_t wp;
  double t2 = t * t;
  double t3 = t2 * t;
  double t4 = t3 * t;
  // equation found with sympy
  wp.first = (6.0 * t4 - 12.0 * t3 + 6.0 * t2);
  wp.second = 1.0 * pi[0] * t4 - 4.0 * pi[0] * t3 + 6.0 * pi[0] * t2 -
              4.0 * pi[0] * t + 1.0 * pi[0] - 4.0 * pi[1] * t4 +
              12.0 * pi[1] * t3 - 12.0 * pi[1] * t2 + 4.0 * pi[1] * t -
              4.0 * pi[3] * t4 + 4.0 * pi[3] * t3 + 1.0 * pi[4] * t4;
  return wp;
}

inline coefs_t evaluateAccelerationCurveAtTime(const std::vector<point_t>& pi,
                                               double T, double t) {
  coefs_t wp;
  double alpha = 1. / (T * T);
  // equation found with sympy
  wp.first = (72.0 * t * t - 72.0 * t + 12.0) * alpha;
  wp.second = (12.0 * pi[0] * t * t - 24.0 * pi[0] * t + 12.0 * pi[0] -
               48.0 * pi[1] * t * t + 72.0 * pi[1] * t - 24.0 * pi[1] -
               48.0 * pi[3] * t * t + 24.0 * pi[3] * t + 12.0 * pi[4] * t * t) *
              alpha;
  return wp;
}

inline std::vector<point_t> computeConstantWaypoints(const ProblemData& pData,
                                                     double T) {
  // equation for constraint on initial and final position and velocity (degree
  // 4, 4 constant waypoint and one free (p2)) first, compute the constant
  // waypoints that only depend on pData :
  int n = 4;
  std::vector<point_t> pi;
  pi.push_back(pData.c0_);                          // p0
  pi.push_back((pData.dc0_ * T / n) + pData.c0_);   // p1
  pi.push_back(point_t::Zero());                    // p2 = x
  pi.push_back((-pData.dc1_ * T / n) + pData.c1_);  // p3
  pi.push_back(pData.c1_);                          // p4
  return pi;
}

inline bezier_wp_t::t_point_t computeWwaypoints(const ProblemData& pData,
                                                double T) {
  bezier_wp_t::t_point_t wps;
  const int DIM_POINT = 6;
  const int DIM_VAR = 3;
  std::vector<point_t> pi = computeConstantWaypoints(pData, T);
  std::vector<Matrix3> Cpi;
  for (std::size_t i = 0; i < pi.size(); ++i) {
    Cpi.push_back(skew(pi[i]));
  }
  const Vector3 g = pData.contacts_.front().contactPhase_->m_gravity;
  const Matrix3 Cg = skew(g);
  const double T2 = T * T;
  const double alpha = 1 / (T2);
  // equation of waypoints for curve w found with sympy
  waypoint_t w0 = initwp(DIM_POINT, DIM_VAR);
  w0.first.block<3, 3>(0, 0) = 12. * alpha * Matrix3::Identity();
  w0.first.block<3, 3>(3, 0) = 12. * alpha * Cpi[0];
  w0.second.head<3>() = (12. * pi[0] - 24. * pi[1]) * alpha;
  w0.second.tail<3>() = 1.0 * Cg * pi[0] - (24.0 * Cpi[0] * pi[1]) * alpha;
  wps.push_back(w0);
  waypoint_t w1 = initwp(DIM_POINT, DIM_VAR);
  w1.first.block<3, 3>(0, 0) = -2.4 * alpha * Matrix3::Identity();
  w1.first.block<3, 3>(3, 0) = (-12.0 * Cpi[0] + 9.6 * Cpi[1]) * alpha;
  w1.second.head<3>() = (7.2 * pi[0] - 9.6 * pi[1] + 4.8 * pi[3]) * alpha;
  w1.second.tail<3>() =
      (0.2 * Cg * T2 * pi[0] + 0.8 * Cg * T2 * pi[1] + 4.8 * Cpi[0] * pi[3]) *
      alpha;
  wps.push_back(w1);
  waypoint_t w2 = initwp(DIM_POINT, DIM_VAR);
  w2.first.block<3, 3>(0, 0) = -9.6 * alpha * Matrix3::Identity();
  w2.first.block<3, 3>(3, 0) = (0.6 * Cg * T2 - 9.6 * Cpi[1]) * alpha;
  w2.second.head<3>() = (3.6 * pi[0] + 4.8 * pi[3] + 1.2 * pi[4]) * alpha;
  w2.second.tail<3>() = (0.4 * Cg * T2 * pi[1] - 4.8 * Cpi[0] * pi[3] +
                         1.2 * Cpi[0] * pi[4] + 9.6 * Cpi[1] * pi[3]) *
                        alpha;
  wps.push_back(w2);
  waypoint_t w3 = initwp(DIM_POINT, DIM_VAR);
  w3.first.block<3, 3>(0, 0) = -9.6 * alpha * Matrix3::Identity();
  w3.first.block<3, 3>(3, 0) = (0.6 * Cg * T2 - 9.6 * Cpi[3]) * alpha;
  w3.second.head<3>() = (1.2 * pi[0] + 4.8 * pi[1] + 3.6 * pi[4]) * alpha;
  w3.second.tail<3>() = (0.4 * Cg * T2 * pi[3] - 1.2 * Cpi[0] * pi[4] -
                         9.6 * Cpi[1] * pi[3] + 4.8 * Cpi[1] * pi[4]) *
                        alpha;
  wps.push_back(w3);
  waypoint_t w4 = initwp(DIM_POINT, DIM_VAR);
  w4.first.block<3, 3>(0, 0) = -2.4 * alpha * Matrix3::Identity();
  w4.first.block<3, 3>(3, 0) = (9.6 * Cpi[3] - 12.0 * Cpi[4]) * alpha;
  w4.second.head<3>() = (4.8 * pi[1] - 9.6 * pi[3] + 7.2 * pi[4]) * alpha;
  w4.second.tail<3>() =
      (0.8 * Cg * T2 * pi[3] + 0.2 * Cg * T2 * pi[4] - 4.8 * Cpi[1] * pi[4]) *
      alpha;
  wps.push_back(w4);
  waypoint_t w5 = initwp(DIM_POINT, DIM_VAR);
  w5.first.block<3, 3>(0, 0) = 12 * alpha * Matrix3::Identity();
  w5.first.block<3, 3>(3, 0) = 12.0 * Cpi[4] * alpha;
  w5.second.head<3>() = (-24 * pi[3] + 12 * pi[4]) * alpha;
  w5.second.tail<3>() = (Cg * T2 * pi[4] + 24.0 * Cpi[3] * pi[4]) * alpha;
  wps.push_back(w5);
  return wps;
}

inline coefs_t computeFinalVelocityPoint(const ProblemData& pData, double T) {
  coefs_t v;
  std::vector<point_t> pi = computeConstantWaypoints(pData, T);
  // equation found with sympy
  v.first = 0.;
  v.second = (-4.0 * pi[3] + 4.0 * pi[4]) / T;
  return v;
}

}  // namespace c0_dc0_dc1_c1
}  // namespace bezier_com_traj
#endif