Forked from
Humanoid Path Planner / hpp-bezier-com-traj
130 commits behind the upstream repository.
-
Guilhem Saurel authoredGuilhem Saurel authored
waypoints_c0_dc0_dc1_c1.hh 5.68 KiB
/*
* Copyright 2018, LAAS-CNRS
* Author: Pierre Fernbach
*/
#ifndef BEZIER_COM_TRAJ_C0DC0D1C1_H
#define BEZIER_COM_TRAJ_C0DC0D1C1_H
#include <hpp/bezier-com-traj/data.hh>
namespace bezier_com_traj {
namespace c0_dc0_dc1_c1 {
static const ConstraintFlag flag = INIT_POS | INIT_VEL | END_POS | END_VEL;
/// ### EQUATION FOR CONSTRAINTS ON INIT AND FINAL POSITION AND VELOCITY (DEGREE
/// = 4)
/** @brief evaluateCurveAtTime compute the expression of the point on the curve
* at t, defined by the waypoint pi and one free waypoint (x)
* @param pi constant waypoints of the curve, assume p0 p1 x p2 p3
* @param t param (normalized !)
* @return the expression of the waypoint such that wp.first . x + wp.second =
* point on curve
*/
inline coefs_t evaluateCurveAtTime(const std::vector<point_t>& pi, double t) {
coefs_t wp;
double t2 = t * t;
double t3 = t2 * t;
double t4 = t3 * t;
// equation found with sympy
wp.first = (6.0 * t4 - 12.0 * t3 + 6.0 * t2);
wp.second = 1.0 * pi[0] * t4 - 4.0 * pi[0] * t3 + 6.0 * pi[0] * t2 -
4.0 * pi[0] * t + 1.0 * pi[0] - 4.0 * pi[1] * t4 +
12.0 * pi[1] * t3 - 12.0 * pi[1] * t2 + 4.0 * pi[1] * t -
4.0 * pi[3] * t4 + 4.0 * pi[3] * t3 + 1.0 * pi[4] * t4;
return wp;
}
inline coefs_t evaluateAccelerationCurveAtTime(const std::vector<point_t>& pi,
double T, double t) {
coefs_t wp;
double alpha = 1. / (T * T);
// equation found with sympy
wp.first = (72.0 * t * t - 72.0 * t + 12.0) * alpha;
wp.second = (12.0 * pi[0] * t * t - 24.0 * pi[0] * t + 12.0 * pi[0] -
48.0 * pi[1] * t * t + 72.0 * pi[1] * t - 24.0 * pi[1] -
48.0 * pi[3] * t * t + 24.0 * pi[3] * t + 12.0 * pi[4] * t * t) *
alpha;
return wp;
}
inline std::vector<point_t> computeConstantWaypoints(const ProblemData& pData,
double T) {
// equation for constraint on initial and final position and velocity (degree
// 4, 4 constant waypoint and one free (p2)) first, compute the constant
// waypoints that only depend on pData :
int n = 4;
std::vector<point_t> pi;
pi.push_back(pData.c0_); // p0
pi.push_back((pData.dc0_ * T / n) + pData.c0_); // p1
pi.push_back(point_t::Zero()); // p2 = x
pi.push_back((-pData.dc1_ * T / n) + pData.c1_); // p3
pi.push_back(pData.c1_); // p4
return pi;
}
inline bezier_wp_t::t_point_t computeWwaypoints(const ProblemData& pData,
double T) {
bezier_wp_t::t_point_t wps;
const int DIM_POINT = 6;
const int DIM_VAR = 3;
std::vector<point_t> pi = computeConstantWaypoints(pData, T);
std::vector<Matrix3> Cpi;
for (std::size_t i = 0; i < pi.size(); ++i) {
Cpi.push_back(skew(pi[i]));
}
const Vector3 g = pData.contacts_.front().contactPhase_->m_gravity;
const Matrix3 Cg = skew(g);
const double T2 = T * T;
const double alpha = 1 / (T2);
// equation of waypoints for curve w found with sympy
waypoint_t w0 = initwp(DIM_POINT, DIM_VAR);
w0.first.block<3, 3>(0, 0) = 12. * alpha * Matrix3::Identity();
w0.first.block<3, 3>(3, 0) = 12. * alpha * Cpi[0];
w0.second.head<3>() = (12. * pi[0] - 24. * pi[1]) * alpha;
w0.second.tail<3>() = 1.0 * Cg * pi[0] - (24.0 * Cpi[0] * pi[1]) * alpha;
wps.push_back(w0);
waypoint_t w1 = initwp(DIM_POINT, DIM_VAR);
w1.first.block<3, 3>(0, 0) = -2.4 * alpha * Matrix3::Identity();
w1.first.block<3, 3>(3, 0) = (-12.0 * Cpi[0] + 9.6 * Cpi[1]) * alpha;
w1.second.head<3>() = (7.2 * pi[0] - 9.6 * pi[1] + 4.8 * pi[3]) * alpha;
w1.second.tail<3>() =
(0.2 * Cg * T2 * pi[0] + 0.8 * Cg * T2 * pi[1] + 4.8 * Cpi[0] * pi[3]) *
alpha;
wps.push_back(w1);
waypoint_t w2 = initwp(DIM_POINT, DIM_VAR);
w2.first.block<3, 3>(0, 0) = -9.6 * alpha * Matrix3::Identity();
w2.first.block<3, 3>(3, 0) = (0.6 * Cg * T2 - 9.6 * Cpi[1]) * alpha;
w2.second.head<3>() = (3.6 * pi[0] + 4.8 * pi[3] + 1.2 * pi[4]) * alpha;
w2.second.tail<3>() = (0.4 * Cg * T2 * pi[1] - 4.8 * Cpi[0] * pi[3] +
1.2 * Cpi[0] * pi[4] + 9.6 * Cpi[1] * pi[3]) *
alpha;
wps.push_back(w2);
waypoint_t w3 = initwp(DIM_POINT, DIM_VAR);
w3.first.block<3, 3>(0, 0) = -9.6 * alpha * Matrix3::Identity();
w3.first.block<3, 3>(3, 0) = (0.6 * Cg * T2 - 9.6 * Cpi[3]) * alpha;
w3.second.head<3>() = (1.2 * pi[0] + 4.8 * pi[1] + 3.6 * pi[4]) * alpha;
w3.second.tail<3>() = (0.4 * Cg * T2 * pi[3] - 1.2 * Cpi[0] * pi[4] -
9.6 * Cpi[1] * pi[3] + 4.8 * Cpi[1] * pi[4]) *
alpha;
wps.push_back(w3);
waypoint_t w4 = initwp(DIM_POINT, DIM_VAR);
w4.first.block<3, 3>(0, 0) = -2.4 * alpha * Matrix3::Identity();
w4.first.block<3, 3>(3, 0) = (9.6 * Cpi[3] - 12.0 * Cpi[4]) * alpha;
w4.second.head<3>() = (4.8 * pi[1] - 9.6 * pi[3] + 7.2 * pi[4]) * alpha;
w4.second.tail<3>() =
(0.8 * Cg * T2 * pi[3] + 0.2 * Cg * T2 * pi[4] - 4.8 * Cpi[1] * pi[4]) *
alpha;
wps.push_back(w4);
waypoint_t w5 = initwp(DIM_POINT, DIM_VAR);
w5.first.block<3, 3>(0, 0) = 12 * alpha * Matrix3::Identity();
w5.first.block<3, 3>(3, 0) = 12.0 * Cpi[4] * alpha;
w5.second.head<3>() = (-24 * pi[3] + 12 * pi[4]) * alpha;
w5.second.tail<3>() = (Cg * T2 * pi[4] + 24.0 * Cpi[3] * pi[4]) * alpha;
wps.push_back(w5);
return wps;
}
inline coefs_t computeFinalVelocityPoint(const ProblemData& pData, double T) {
coefs_t v;
std::vector<point_t> pi = computeConstantWaypoints(pData, T);
// equation found with sympy
v.first = 0.;
v.second = (-4.0 * pi[3] + 4.0 * pi[4]) / T;
return v;
}
} // namespace c0_dc0_dc1_c1
} // namespace bezier_com_traj
#endif