Skip to content
Snippets Groups Projects
Unverified Commit 25d90fd8 authored by Joseph Mirabel's avatar Joseph Mirabel Committed by GitHub
Browse files

Merge pull request #104 from gabrielebndn/topic/inertias

[geometric_shape] Fix radius, CoM and inertia computation + Python unit tests
parents 94146680 111cb159
No related branches found
Tags v1.1.4-rc1
No related merge requests found
Checking pipeline status
build*
Xcode/*
*~
*.pyc
......@@ -125,10 +125,10 @@ public:
FCL_REAL threshold_free;
/// @brief compute center of mass
virtual Vec3f computeCOM() const { return Vec3f(); }
virtual Vec3f computeCOM() const { return Vec3f::Zero(); }
/// @brief compute the inertia matrix, related to the origin
virtual Matrix3f computeMomentofInertia() const { return Matrix3f(); }
virtual Matrix3f computeMomentofInertia() const { return Matrix3f::Constant(NAN); }
/// @brief compute the volume
virtual FCL_REAL computeVolume() const { return 0; }
......
......@@ -143,7 +143,7 @@ public:
FCL_REAL computeVolume() const
{
return 4 * boost::math::constants::pi<FCL_REAL>() * radius * radius / 3;
return 4 * boost::math::constants::pi<FCL_REAL>() * radius * radius * radius / 3;
}
};
......@@ -178,7 +178,9 @@ public:
FCL_REAL v_cyl = radius * radius * (halfLength * 2) * boost::math::constants::pi<FCL_REAL>();
FCL_REAL v_sph = radius * radius * radius * boost::math::constants::pi<FCL_REAL>() * 4 / 3.0;
FCL_REAL ix = v_cyl * halfLength * halfLength / 3. + 0.25 * v_cyl * radius + 0.4 * v_sph * radius * radius + v_sph * halfLength * halfLength;
FCL_REAL h2 = halfLength * halfLength;
FCL_REAL r2 = radius * radius;
FCL_REAL ix = v_cyl * (h2 / 3. + r2 / 4.) + v_sph * (0.4 * r2 + h2 + 0.75 * radius * halfLength);
FCL_REAL iz = (0.5 * v_cyl + 0.4 * v_sph) * radius * radius;
return (Matrix3f() << ix, 0, 0,
......@@ -214,7 +216,6 @@ public:
return boost::math::constants::pi<FCL_REAL>() * radius * radius * (halfLength * 2) / 3;
}
/// \todo verify this formula as it seems different from https://en.wikipedia.org/wiki/List_of_moments_of_inertia#List_of_3D_inertia_tensors
Matrix3f computeMomentofInertia() const
{
FCL_REAL V = computeVolume();
......
import unittest
from test_case import TestCase
import hppfcl
hppfcl.switchToNumpyMatrix()
import numpy as np
class TestGeometricShapes(unittest.TestCase):
class TestGeometricShapes(TestCase):
def test_capsule(self):
capsule = hppfcl.Capsule(1.,2.)
......@@ -17,6 +18,28 @@ class TestGeometricShapes(unittest.TestCase):
capsule.halfLength = 4.
self.assertEqual(capsule.radius,3.)
self.assertEqual(capsule.halfLength,4.)
com = capsule.computeCOM()
self.assertApprox(com, np.zeros(3))
V = capsule.computeVolume()
V_cylinder = capsule.radius * capsule.radius * np.pi * 2. * capsule.halfLength
V_sphere = 4. * np.pi/3 * capsule.radius**3
V_ref = V_cylinder + V_sphere
self.assertApprox(V, V_ref)
I0 = capsule.computeMomentofInertia()
Iz_cylinder = V_cylinder * capsule.radius**2 / 2.
Iz_sphere = 0.4 * V_sphere * capsule.radius * capsule.radius
Iz_ref = Iz_cylinder + Iz_sphere
Ix_cylinder = V_cylinder*(3 * capsule.radius**2 + 4 * capsule.halfLength**2)/12.
V_hemi = 0.5 * V_sphere # volume of hemisphere
I0x_hemi = 0.5 * Iz_sphere # inertia of hemisphere w.r.t. origin
com_hemi = 3. * capsule.radius / 8. # CoM of hemisphere w.r.t. origin
Icx_hemi = I0x_hemi - V_hemi * com_hemi * com_hemi # inertia of hemisphere w.r.t. CoM
Ix_hemi = Icx_hemi + V_hemi * (capsule.halfLength + com_hemi)**2 # inertia of hemisphere w.r.t. tip of cylinder
Ix_ref = Ix_cylinder + 2*Ix_hemi # total inertia of capsule
I0_ref = np.diag([Ix_ref,Ix_ref,Iz_ref])
self.assertApprox(I0, I0_ref)
Ic = capsule.computeMomentofInertiaRelatedToCOM()
self.assertApprox(Ic, I0_ref)
def test_box1(self):
box = hppfcl.Box(np.matrix([1.,2.,3.]).T)
......@@ -27,6 +50,22 @@ class TestGeometricShapes(unittest.TestCase):
self.assertTrue(np.array_equal(box.halfSide,np.matrix([.5,1.,1.5]).T))
box.halfSide = np.matrix([4.,5.,6.]).T
self.assertTrue(np.array_equal(box.halfSide,np.matrix([4.,5.,6.]).T))
com = box.computeCOM()
self.assertApprox(com, np.zeros(3))
V = box.computeVolume()
x = float(2*box.halfSide[0])
y = float(2*box.halfSide[1])
z = float(2*box.halfSide[2])
V_ref = x * y * z
self.assertApprox(V, V_ref)
I0 = box.computeMomentofInertia()
Ix = V_ref * (y*y + z*z) / 12.
Iy = V_ref * (x*x + z*z) / 12.
Iz = V_ref * (y*y + x*x) / 12.
I0_ref = np.diag([Ix,Iy,Iz])
self.assertApprox(I0, I0_ref)
Ic = box.computeMomentofInertiaRelatedToCOM()
self.assertApprox(Ic, I0_ref)
def test_box2(self):
box = hppfcl.Box(1.,2.,3)
......@@ -37,22 +76,26 @@ class TestGeometricShapes(unittest.TestCase):
self.assertEqual(box.halfSide[0],0.5)
self.assertEqual(box.halfSide[1],1.0)
self.assertEqual(box.halfSide[2],1.5)
box.halfSide[0] = 4.
box.halfSide[0] = 5.
box.halfSide[0] = 6.
# self.assertEqual(box.halfSide[0],4.)
# self.assertEqual(box.halfSide[1],5.)
# self.assertEqual(box.halfSide[2],6.)
def test_sphere(self):
sphere = hppfcl.Sphere(1.)
self.assertIsInstance(sphere, hppfcl.Sphere)
self.assertIsInstance(sphere, hppfcl.ShapeBase)
self.assertIsInstance(sphere, hppfcl.CollisionGeometry)
self.assertEqual(sphere.getNodeType(), hppfcl.NODE_TYPE.GEOM_SPHERE)
self.assertEqual(sphere.radius,1.)
self.assertEqual(sphere.radius, 1.)
sphere.radius = 2.
self.assertEqual(sphere.radius,2.)
self.assertEqual(sphere.radius, 2.)
com = sphere.computeCOM()
self.assertApprox(com, np.zeros(3))
V = sphere.computeVolume()
V_ref = 4. * np.pi/3 * sphere.radius**3
self.assertApprox(V, V_ref)
I0 = sphere.computeMomentofInertia()
I0_ref = 0.4 * V_ref * sphere.radius * sphere.radius * np.identity(3)
self.assertApprox(I0, I0_ref)
Ic = sphere.computeMomentofInertiaRelatedToCOM()
self.assertApprox(Ic, I0_ref)
def test_cylinder(self):
cylinder = hppfcl.Cylinder(1.,2.)
......@@ -62,6 +105,22 @@ class TestGeometricShapes(unittest.TestCase):
self.assertEqual(cylinder.getNodeType(), hppfcl.NODE_TYPE.GEOM_CYLINDER)
self.assertEqual(cylinder.radius,1.)
self.assertEqual(cylinder.halfLength,1.)
cylinder.radius = 3.
cylinder.halfLength = 4.
self.assertEqual(cylinder.radius,3.)
self.assertEqual(cylinder.halfLength,4.)
com = cylinder.computeCOM()
self.assertApprox(com, np.zeros(3))
V = cylinder.computeVolume()
V_ref = cylinder.radius * cylinder.radius * np.pi * 2. * cylinder.halfLength
self.assertApprox(V, V_ref)
I0 = cylinder.computeMomentofInertia()
Ix_ref = V_ref*(3 * cylinder.radius**2 + 4 * cylinder.halfLength**2)/12.
Iz_ref = V_ref * cylinder.radius**2 / 2.
I0_ref = np.diag([Ix_ref,Ix_ref,Iz_ref])
self.assertApprox(I0, I0_ref)
Ic = cylinder.computeMomentofInertiaRelatedToCOM()
self.assertApprox(Ic, I0_ref)
def test_cone(self):
cone = hppfcl.Cone(1.,2.)
......@@ -75,6 +134,20 @@ class TestGeometricShapes(unittest.TestCase):
cone.halfLength = 4.
self.assertEqual(cone.radius,3.)
self.assertEqual(cone.halfLength,4.)
com = cone.computeCOM()
self.assertApprox(com, np.matrix([0.,0.,-0.5 * cone.halfLength]).T)
V = cone.computeVolume()
V_ref = np.pi * cone.radius**2 * 2. * cone.halfLength / 3.
self.assertApprox(V, V_ref)
I0 = cone.computeMomentofInertia()
Ix_ref = V_ref * (3./20. * cone.radius**2 + 0.4 * cone.halfLength**2)
Iz_ref = 0.3 * V_ref * cone.radius**2
I0_ref = np.diag([Ix_ref,Ix_ref,Iz_ref])
self.assertApprox(I0, I0_ref)
Ic = cone.computeMomentofInertiaRelatedToCOM()
Icx_ref = V_ref * 3./20. * (cone.radius**2 + cone.halfLength**2)
Ic_ref = np.diag([Icx_ref,Icx_ref,Iz_ref])
self.assertApprox(Ic, Ic_ref)
if __name__ == '__main__':
unittest.main()
\ No newline at end of file
unittest.main()
import unittest
import numpy as np
class TestCase(unittest.TestCase):
def assertApprox(self, a, b, epsilon=1e-6):
return self.assertTrue(np.allclose(a, b, epsilon), "%s !~= %s" % (a, b))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment