Commit ca870b00 by Wolfgang Merkt

### contact-dynamics: Add % at end of Latex line to avoid Wcomment warning

 ... ... @@ -14,7 +14,7 @@ namespace pinocchio /// /// \brief Compute the forward dynamics with contact constraints. Internally, pinocchio::computeAllTerms is called. /// \note It computes the following problem:
///
\f$\begin{eqnarray} \underset{\ddot{q}}{\min} & & \| \ddot{q} - \ddot{q}_{\text{free}} \|_{M(q)} \\ /// \f$ \begin{eqnarray} \underset{\ddot{q}}{\min} & & \| \ddot{q} - \ddot{q}_{\text{free}} \|_{M(q)} \\ % /// \text{s.t.} & & J (q) \ddot{q} + \gamma (q, \dot{q}) = 0 \end{eqnarray} \f$/// where \f$ \ddot{q}_{\text{free}} \f$is the free acceleration (i.e. without constraints), /// \f$ M \f$is the mass matrix, \f$ J \f$the constraint Jacobian and \f$ \gamma \f$is the constraint drift. ... ... @@ -55,7 +55,7 @@ namespace pinocchio /// /// \brief Compute the forward dynamics with contact constraints, assuming pinocchio::computeAllTerms has been called. /// \note It computes the following problem: /// \f$ \begin{eqnarray} \underset{\ddot{q}}{\min} & & \| \ddot{q} - \ddot{q}_{\text{free}} \|_{M(q)} \\ ///
\f$\begin{eqnarray} \underset{\ddot{q}}{\min} & & \| \ddot{q} - \ddot{q}_{\text{free}} \|_{M(q)} \\ % /// \text{s.t.} & & J (q) \ddot{q} + \gamma (q, \dot{q}) = 0 \end{eqnarray} \f$

/// where \f$\ddot{q}_{\text{free}} \f$ is the free acceleration (i.e. without constraints), /// \f$M \f$ is the mass matrix, \f$J \f$ the constraint Jacobian and \f$\gamma \f$ is the constraint drift. ... ... @@ -97,7 +97,7 @@ namespace pinocchio /// Please change for the new signature of forwardDynamics(model,data[,q],v,tau,J,gamma[,inv_damping]). /// /// \note It computes the following problem:
///
\f$\begin{eqnarray} \underset{\ddot{q}}{\min} & & \| \ddot{q} - \ddot{q}_{\text{free}} \|_{M(q)} \\ /// \f$ \begin{eqnarray} \underset{\ddot{q}}{\min} & & \| \ddot{q} - \ddot{q}_{\text{free}} \|_{M(q)} \\ % /// \text{s.t.} & & J (q) \ddot{q} + \gamma (q, \dot{q}) = 0 \end{eqnarray} \f$/// where \f$ \ddot{q}_{\text{free}} \f$is the free acceleration (i.e. without constraints), /// \f$ M \f$is the mass matrix, \f$ J \f$the constraint Jacobian and \f$ \gamma \f$is the constraint drift. ... ... @@ -119,7 +119,7 @@ namespace pinocchio /// \param[in] J The Jacobian of the constraints (dim nb_constraints*model.nv). /// \param[in] gamma The drift of the constraints (dim nb_constraints). /// \param[in] inv_damping Damping factor for Cholesky decomposition of JMinvJt. Set to zero if constraints are full rank. /// \param[in] updateKinematics If true, the algorithm calls first pinocchio::computeAllTerms. Otherwise, it uses the current dynamic values stored in data. \\ /// \param[in] updateKinematics If true, the algorithm calls first pinocchio::computeAllTerms. Otherwise, it uses the current dynamic values stored in data. \\ % /// \note A hint: 1e-12 as the damping factor gave good result in the particular case of redundancy in contact constraints on the two feet. /// /// \return A reference to the joint acceleration stored in data.ddq. The Lagrange Multipliers linked to the contact forces are available throw data.lambda_c vector. ... ... @@ -165,7 +165,7 @@ namespace pinocchio /// /// \brief Compute the impulse dynamics with contact constraints. Internally, pinocchio::crba is called. /// \note It computes the following problem: /// \f$ \begin{eqnarray} \underset{\dot{q}^{+}}{\min} & & \| \dot{q}^{+} - \dot{q}^{-} \|_{M(q)} \\ ///
\f$\begin{eqnarray} \underset{\dot{q}^{+}}{\min} & & \| \dot{q}^{+} - \dot{q}^{-} \|_{M(q)} \\ % /// \text{s.t.} & & J (q) \dot{q}^{+} = - \epsilon J (q) \dot{q}^{-} \end{eqnarray} \f$

/// where \f$\dot{q}^{-} \f$ is the generalized velocity before impact, /// \f$M \f$ is the joint space mass matrix, \f$J \f$ the constraint Jacobian and \f$\epsilon \f$ is the coefficient of restitution (1 for a fully elastic impact or 0 for a rigid impact). ... ... @@ -198,7 +198,7 @@ namespace pinocchio /// /// \brief Compute the impulse dynamics with contact constraints, assuming pinocchio::crba has been called. /// \note It computes the following problem:
///
\f$\begin{eqnarray} \underset{\dot{q}^{+}}{\min} & & \| \dot{q}^{+} - \dot{q}^{-} \|_{M(q)} \\ /// \f$ \begin{eqnarray} \underset{\dot{q}^{+}}{\min} & & \| \dot{q}^{+} - \dot{q}^{-} \|_{M(q)} \\ % /// \text{s.t.} & & J (q) \dot{q}^{+} = - \epsilon J (q) \dot{q}^{-} \end{eqnarray} \f$/// where \f$ \dot{q}^{-} \f$is the generalized velocity before impact, /// \f$ M \f$is the joint space mass matrix, \f$ J \f$the constraint Jacobian and \f$ \epsilon \f$is the coefficient of restitution (1 for a fully elastic impact or 0 for a rigid impact). ... ... @@ -233,7 +233,7 @@ namespace pinocchio /// Please change for the new signature of impulseDynamics(model,data[,q],v_before,J[,r_coeff[,inv_damping]]). /// /// \note It computes the following problem: /// \f$ \begin{eqnarray} \underset{\dot{q}^{+}}{\min} & & \| \dot{q}^{+} - \dot{q}^{-} \|_{M(q)} \\ ///
\f$\begin{eqnarray} \underset{\dot{q}^{+}}{\min} & & \| \dot{q}^{+} - \dot{q}^{-} \|_{M(q)} \\ % /// \text{s.t.} & & J (q) \dot{q}^{+} = - \epsilon J (q) \dot{q}^{-} \end{eqnarray} \f$

/// where \f$\dot{q}^{-} \f$ is the generalized velocity before impact, /// \f$M \f$ is the joint space mass matrix, \f$J \f$ the constraint Jacobian and \f$\epsilon \f$ is the coefficient of restitution (1 for a fully elastic impact or 0 for a rigid impact). ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!