/// where \f$ \ddot{q}_{\text{free}} \f$ is the free acceleration (i.e. without constraints),
/// \f$ M \f$ is the mass matrix, \f$ J \f$ the constraint Jacobian and \f$ \gamma \f$ is the constraint drift.
...
...
@@ -119,7 +119,7 @@ namespace pinocchio
/// \param[in] J The Jacobian of the constraints (dim nb_constraints*model.nv).
/// \param[in] gamma The drift of the constraints (dim nb_constraints).
/// \param[in] inv_damping Damping factor for Cholesky decomposition of JMinvJt. Set to zero if constraints are full rank.
/// \param[in] updateKinematics If true, the algorithm calls first pinocchio::computeAllTerms. Otherwise, it uses the current dynamic values stored in data. \\
/// \param[in] updateKinematics If true, the algorithm calls first pinocchio::computeAllTerms. Otherwise, it uses the current dynamic values stored in data. \\ %
/// \note A hint: 1e-12 as the damping factor gave good result in the particular case of redundancy in contact constraints on the two feet.
///
/// \return A reference to the joint acceleration stored in data.ddq. The Lagrange Multipliers linked to the contact forces are available throw data.lambda_c vector.
...
...
@@ -165,7 +165,7 @@ namespace pinocchio
///
/// \brief Compute the impulse dynamics with contact constraints. Internally, pinocchio::crba is called.
/// where \f$ \dot{q}^{-} \f$ is the generalized velocity before impact,
/// \f$ M \f$ is the joint space mass matrix, \f$ J \f$ the constraint Jacobian and \f$ \epsilon \f$ is the coefficient of restitution (1 for a fully elastic impact or 0 for a rigid impact).
...
...
@@ -198,7 +198,7 @@ namespace pinocchio
///
/// \brief Compute the impulse dynamics with contact constraints, assuming pinocchio::crba has been called.
/// where \f$ \dot{q}^{-} \f$ is the generalized velocity before impact,
/// \f$ M \f$ is the joint space mass matrix, \f$ J \f$ the constraint Jacobian and \f$ \epsilon \f$ is the coefficient of restitution (1 for a fully elastic impact or 0 for a rigid impact).
...
...
@@ -233,7 +233,7 @@ namespace pinocchio
/// Please change for the new signature of impulseDynamics(model,data[,q],v_before,J[,r_coeff[,inv_damping]]).
/// where \f$ \dot{q}^{-} \f$ is the generalized velocity before impact,
/// \f$ M \f$ is the joint space mass matrix, \f$ J \f$ the constraint Jacobian and \f$ \epsilon \f$ is the coefficient of restitution (1 for a fully elastic impact or 0 for a rigid impact).