From 879f74caf4ab9128e50a0f61ab0d4f06156beadf Mon Sep 17 00:00:00 2001 From: Olivier Stasse <ostasse@laas.fr> Date: Fri, 23 Sep 2016 19:24:01 +0200 Subject: [PATCH] Fix and first running test with the Fortran solution. --- src/Fortran/CMakeLists.txt | 5 +- src/Fortran/{dgges.f => gdgges.f} | 18 +- src/Fortran/gdtgex2.f | 697 ++++++++++++++ src/Fortran/gdtgexc.f | 544 +++++++++++ src/Fortran/gdtgsen.f | 866 ++++++++++++++++++ .../OptimalControllerSolver.cpp | 4 +- tests/CMakeLists.txt | 2 + 7 files changed, 2124 insertions(+), 12 deletions(-) rename src/Fortran/{dgges.f => gdgges.f} (97%) create mode 100644 src/Fortran/gdtgex2.f create mode 100644 src/Fortran/gdtgexc.f create mode 100644 src/Fortran/gdtgsen.f diff --git a/src/Fortran/CMakeLists.txt b/src/Fortran/CMakeLists.txt index db17ae78..7daa78ad 100644 --- a/src/Fortran/CMakeLists.txt +++ b/src/Fortran/CMakeLists.txt @@ -4,10 +4,13 @@ SET(SOURCES_FORTRAN dgesvd.f dgesvx.f dgetrf.f - dgges.f + gdgges.f dlamch.f dlapy2.f dgetrf2.f + gdtgsen.f + gdtgexc.f + gdtgex2.f gdgemm.f gsgemm.f ) diff --git a/src/Fortran/dgges.f b/src/Fortran/gdgges.f similarity index 97% rename from src/Fortran/dgges.f rename to src/Fortran/gdgges.f index 76d6d399..1a9a2f6d 100644 --- a/src/Fortran/dgges.f +++ b/src/Fortran/gdgges.f @@ -1,4 +1,4 @@ -*> \brief <b> DGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b> +*> \brief <b> GDGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b> * * =========== DOCUMENTATION =========== * @@ -6,7 +6,7 @@ * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly -*> Download DGGES + dependencies +*> Download GDGGES + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges.f"> @@ -18,7 +18,7 @@ * Definition: * =========== * -* SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, +* SUBROUTINE GDGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, * SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, * LDVSR, WORK, LWORK, BWORK, INFO ) * @@ -43,7 +43,7 @@ *> *> \verbatim *> -*> DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), +*> GDGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), *> the generalized eigenvalues, the generalized real Schur form (S,T), *> optionally, the left and/or right matrices of Schur vectors (VSL and *> VSR). This gives the generalized Schur factorization @@ -264,8 +264,8 @@ *> eigenvalues in the Generalized Schur form no *> longer satisfy SELCTG=.TRUE. This could also *> be caused due to scaling. -*> =N+3: reordering failed in DTGSEN. -*> \endverbatim +*> =N+3: reordering failed in GDTGSEN. +*> \endverbatnim * * Authors: * ======== @@ -280,7 +280,7 @@ *> \ingroup doubleGEeigen * * ===================================================================== - SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, + SUBROUTINE GDGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,LDB, $ SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, $ LDVSR, WORK, LWORK, BWORK, INFO ) * @@ -325,7 +325,7 @@ * .. * .. External Subroutines .. EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD, - $ DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN, + $ DLACPY, DLASCL, DLASET, DORGQR, DORMQR,GDTGSEN, $ XERBLA * .. * .. External Functions .. @@ -557,7 +557,7 @@ BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) ) 10 CONTINUE * - CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR, + CALL GDTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,ALPHAR, $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, $ PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, $ IERR ) diff --git a/src/Fortran/gdtgex2.f b/src/Fortran/gdtgex2.f new file mode 100644 index 00000000..51cf797e --- /dev/null +++ b/src/Fortran/gdtgex2.f @@ -0,0 +1,697 @@ +*> \brief \b GDTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equivalence transformation. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download GDTGEX2 + dependencies +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.f"> +*> [TGZ]</a> +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.f"> +*> [ZIP]</a> +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.f"> +*> [TXT]</a> +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, +* LDZ, J1, N1, N2, WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* LOGICAL WANTQ, WANTZ +* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), +* $ WORK( * ), Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> GDTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) +*> of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair +*> (A, B) by an orthogonal equivalence transformation. +*> +*> (A, B) must be in generalized real Schur canonical form (as returned +*> by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 +*> diagonal blocks. B is upper triangular. +*> +*> Optionally, the matrices Q and Z of generalized Schur vectors are +*> updated. +*> +*> Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T +*> Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T +*> +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] WANTQ +*> \verbatim +*> WANTQ is LOGICAL +*> .TRUE. : update the left transformation matrix Q; +*> .FALSE.: do not update Q. +*> \endverbatim +*> +*> \param[in] WANTZ +*> \verbatim +*> WANTZ is LOGICAL +*> .TRUE. : update the right transformation matrix Z; +*> .FALSE.: do not update Z. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrices A and B. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimensions (LDA,N) +*> On entry, the matrix A in the pair (A, B). +*> On exit, the updated matrix A. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimensions (LDB,N) +*> On entry, the matrix B in the pair (A, B). +*> On exit, the updated matrix B. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] Q +*> \verbatim +*> Q is DOUBLE PRECISION array, dimension (LDQ,N) +*> On entry, if WANTQ = .TRUE., the orthogonal matrix Q. +*> On exit, the updated matrix Q. +*> Not referenced if WANTQ = .FALSE.. +*> \endverbatim +*> +*> \param[in] LDQ +*> \verbatim +*> LDQ is INTEGER +*> The leading dimension of the array Q. LDQ >= 1. +*> If WANTQ = .TRUE., LDQ >= N. +*> \endverbatim +*> +*> \param[in,out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ,N) +*> On entry, if WANTZ =.TRUE., the orthogonal matrix Z. +*> On exit, the updated matrix Z. +*> Not referenced if WANTZ = .FALSE.. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1. +*> If WANTZ = .TRUE., LDZ >= N. +*> \endverbatim +*> +*> \param[in] J1 +*> \verbatim +*> J1 is INTEGER +*> The index to the first block (A11, B11). 1 <= J1 <= N. +*> \endverbatim +*> +*> \param[in] N1 +*> \verbatim +*> N1 is INTEGER +*> The order of the first block (A11, B11). N1 = 0, 1 or 2. +*> \endverbatim +*> +*> \param[in] N2 +*> \verbatim +*> N2 is INTEGER +*> The order of the second block (A22, B22). N2 = 0, 1 or 2. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)). +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> =0: Successful exit +*> >0: If INFO = 1, the transformed matrix (A, B) would be +*> too far from generalized Schur form; the blocks are +*> not swapped and (A, B) and (Q, Z) are unchanged. +*> The problem of swapping is too ill-conditioned. +*> <0: If INFO = -16: LWORK is too small. Appropriate value +*> for LWORK is returned in WORK(1). +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2015 +* +*> \ingroup doubleGEauxiliary +* +*> \par Further Details: +* ===================== +*> +*> In the current code both weak and strong stability tests are +*> performed. The user can omit the strong stability test by changing +*> the internal logical parameter WANDS to .FALSE.. See ref. [2] for +*> details. +* +*> \par Contributors: +* ================== +*> +*> Bo Kagstrom and Peter Poromaa, Department of Computing Science, +*> Umea University, S-901 87 Umea, Sweden. +* +*> \par References: +* ================ +*> +*> \verbatim +*> +*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the +*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in +*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and +*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. +*> +*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified +*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition +*> Estimation: Theory, Algorithms and Software, +*> Report UMINF - 94.04, Department of Computing Science, Umea +*> University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working +*> Note 87. To appear in Numerical Algorithms, 1996. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, J1, N1, N2, WORK, LWORK, INFO ) +* +* -- LAPACK auxiliary routine (version 3.6.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2015 +* +* .. Scalar Arguments .. + LOGICAL WANTQ, WANTZ + INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), + $ WORK( * ), Z( LDZ, * ) +* .. +* +* ===================================================================== +* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO +* loops. Sven Hammarling, 1/5/02. +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) + DOUBLE PRECISION TWENTY + PARAMETER ( TWENTY = 2.0D+01 ) + INTEGER LDST + PARAMETER ( LDST = 4 ) + LOGICAL WANDS + PARAMETER ( WANDS = .TRUE. ) +* .. +* .. Local Scalars .. + LOGICAL DTRONG, WEAK + INTEGER I, IDUM, LINFO, M + DOUBLE PRECISION BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS, + $ F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS +* .. +* .. Local Arrays .. + INTEGER IWORK( LDST ) + DOUBLE PRECISION AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ), + $ IRCOP( LDST, LDST ), LI( LDST, LDST ), + $ LICOP( LDST, LDST ), S( LDST, LDST ), + $ SCPY( LDST, LDST ), T( LDST, LDST ), + $ TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST ) +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL GDGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG, + $ DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2, + $ DROT, DSCAL, DTGSY2 +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, SQRT +* .. +* .. Executable Statements .. +* + INFO = 0 +* +* Quick return if possible +* + IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 ) + $ RETURN + IF( N1.GT.N .OR. ( J1+N1 ).GT.N ) + $ RETURN + M = N1 + N2 + IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN + INFO = -16 + WORK( 1 ) = MAX( 1, N*M, M*M*2 ) + RETURN + END IF +* + WEAK = .FALSE. + DTRONG = .FALSE. +* +* Make a local copy of selected block +* + CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST ) + CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST ) + CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST ) + CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST ) +* +* Compute threshold for testing acceptance of swapping. +* + EPS = DLAMCH( 'P' ) + SMLNUM = DLAMCH( 'S' ) / EPS + DSCALE = ZERO + DSUM = ONE + CALL DLACPY( 'Full', M, M, S, LDST, WORK, M ) + CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM ) + CALL DLACPY( 'Full', M, M, T, LDST, WORK, M ) + CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM ) + DNORM = DSCALE*SQRT( DSUM ) +* +* THRES has been changed from +* THRESH = MAX( TEN*EPS*SA, SMLNUM ) +* to +* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) +* on 04/01/10. +* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by +* Jim Demmel and Guillaume Revy. See forum post 1783. +* + THRESH = MAX( TWENTY*EPS*DNORM, SMLNUM ) +* + IF( M.EQ.2 ) THEN +* +* CASE 1: Swap 1-by-1 and 1-by-1 blocks. +* +* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks +* using Givens rotations and perform the swap tentatively. +* + F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 ) + G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 ) + SB = ABS( T( 2, 2 ) ) + SA = ABS( S( 2, 2 ) ) + CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM ) + IR( 2, 1 ) = -IR( 1, 2 ) + IR( 2, 2 ) = IR( 1, 1 ) + CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ), + $ IR( 2, 1 ) ) + CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ), + $ IR( 2, 1 ) ) + IF( SA.GE.SB ) THEN + CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ), + $ DDUM ) + ELSE + CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ), + $ DDUM ) + END IF + CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ), + $ LI( 2, 1 ) ) + CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ), + $ LI( 2, 1 ) ) + LI( 2, 2 ) = LI( 1, 1 ) + LI( 1, 2 ) = -LI( 2, 1 ) +* +* Weak stability test: +* |S21| + |T21| <= O(EPS * F-norm((S, T))) +* + WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) ) + WEAK = WS.LE.THRESH + IF( .NOT.WEAK ) + $ GO TO 70 +* + IF( WANDS ) THEN +* +* Strong stability test: +* F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A,B))) +* + CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ), + $ M ) + CALL GDGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST,ZERO, + $ WORK, M ) + CALL GDGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST,ONE, + $ WORK( M*M+1 ), M ) + DSCALE = ZERO + DSUM = ONE + CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) +* + CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ), + $ M ) + CALL GDGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST,ZERO, + $ WORK, M ) + CALL GDGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST,ONE, + $ WORK( M*M+1 ), M ) + CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) + SS = DSCALE*SQRT( DSUM ) + DTRONG = SS.LE.THRESH + IF( .NOT.DTRONG ) + $ GO TO 70 + END IF +* +* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and +* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). +* + CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ), + $ IR( 2, 1 ) ) + CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ), + $ IR( 2, 1 ) ) + CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, + $ LI( 1, 1 ), LI( 2, 1 ) ) + CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, + $ LI( 1, 1 ), LI( 2, 1 ) ) +* +* Set N1-by-N2 (2,1) - blocks to ZERO. +* + A( J1+1, J1 ) = ZERO + B( J1+1, J1 ) = ZERO +* +* Accumulate transformations into Q and Z if requested. +* + IF( WANTZ ) + $ CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ), + $ IR( 2, 1 ) ) + IF( WANTQ ) + $ CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ), + $ LI( 2, 1 ) ) +* +* Exit with INFO = 0 if swap was successfully performed. +* + RETURN +* + ELSE +* +* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 +* and 2-by-2 blocks. +* +* Solve the generalized Sylvester equation +* S11 * R - L * S22 = SCALE * S12 +* T11 * R - L * T22 = SCALE * T12 +* for R and L. Solutions in LI and IR. +* + CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST ) + CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST, + $ IR( N2+1, N1+1 ), LDST ) + CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST, + $ IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ), + $ LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM, + $ LINFO ) +* +* Compute orthogonal matrix QL: +* +* QL**T * LI = [ TL ] +* [ 0 ] +* where +* LI = [ -L ] +* [ SCALE * identity(N2) ] +* + DO 10 I = 1, N2 + CALL DSCAL( N1, -ONE, LI( 1, I ), 1 ) + LI( N1+I, I ) = SCALE + 10 CONTINUE + CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 + CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 +* +* Compute orthogonal matrix RQ: +* +* IR * RQ**T = [ 0 TR], +* +* where IR = [ SCALE * identity(N1), R ] +* + DO 20 I = 1, N1 + IR( N2+I, I ) = SCALE + 20 CONTINUE + CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 + CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 +* +* Perform the swapping tentatively: +* + CALL GDGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO, + $ WORK, M ) + CALL GDGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO,S, + $ LDST ) + CALL GDGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO, + $ WORK, M ) + CALL GDGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO,T, + $ LDST ) + CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST ) + CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST ) + CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST ) + CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST ) +* +* Triangularize the B-part by an RQ factorization. +* Apply transformation (from left) to A-part, giving S. +* + CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 + CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK, + $ LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 + CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK, + $ LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 +* +* Compute F-norm(S21) in BRQA21. (T21 is 0.) +* + DSCALE = ZERO + DSUM = ONE + DO 30 I = 1, N2 + CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM ) + 30 CONTINUE + BRQA21 = DSCALE*SQRT( DSUM ) +* +* Triangularize the B-part by a QR factorization. +* Apply transformation (from right) to A-part, giving S. +* + CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 + CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST, + $ WORK, INFO ) + CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST, + $ WORK, INFO ) + IF( LINFO.NE.0 ) + $ GO TO 70 +* +* Compute F-norm(S21) in BQRA21. (T21 is 0.) +* + DSCALE = ZERO + DSUM = ONE + DO 40 I = 1, N2 + CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM ) + 40 CONTINUE + BQRA21 = DSCALE*SQRT( DSUM ) +* +* Decide which method to use. +* Weak stability test: +* F-norm(S21) <= O(EPS * F-norm((S, T))) +* + IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN + CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST ) + CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST ) + CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST ) + CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST ) + ELSE IF( BRQA21.GE.THRESH ) THEN + GO TO 70 + END IF +* +* Set lower triangle of B-part to zero +* + CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST ) +* + IF( WANDS ) THEN +* +* Strong stability test: +* F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B))) +* + CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ), + $ M ) + CALL GDGEMM( 'N', 'N', M, M, M,ONE, LI, LDST, S, LDST, ZERO, + $ WORK, M ) + CALL GDGEMM( 'N', 'N', M, M, M,-ONE, WORK, M, IR, LDST, ONE, + $ WORK( M*M+1 ), M ) + DSCALE = ZERO + DSUM = ONE + CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) +* + CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ), + $ M ) + CALL GDGEMM( 'N', 'N', M, M, M,ONE, LI, LDST, T, LDST, ZERO, + $ WORK, M ) + CALL GDGEMM( 'N', 'N', M, M, M,-ONE, WORK, M, IR, LDST, ONE, + $ WORK( M*M+1 ), M ) + CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) + SS = DSCALE*SQRT( DSUM ) + DTRONG = ( SS.LE.THRESH ) + IF( .NOT.DTRONG ) + $ GO TO 70 +* + END IF +* +* If the swap is accepted ("weakly" and "strongly"), apply the +* transformations and set N1-by-N2 (2,1)-block to zero. +* + CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST ) +* +* copy back M-by-M diagonal block starting at index J1 of (A, B) +* + CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA ) + CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB ) + CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST ) +* +* Standardize existing 2-by-2 blocks. +* + CALL DLASET( 'Full', M, M, ZERO, ZERO, WORK, M ) + WORK( 1 ) = ONE + T( 1, 1 ) = ONE + IDUM = LWORK - M*M - 2 + IF( N2.GT.1 ) THEN + CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE, + $ WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) ) + WORK( M+1 ) = -WORK( 2 ) + WORK( M+2 ) = WORK( 1 ) + T( N2, N2 ) = T( 1, 1 ) + T( 1, 2 ) = -T( 2, 1 ) + END IF + WORK( M*M ) = ONE + T( M, M ) = ONE +* + IF( N1.GT.1 ) THEN + CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB, + $ TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ), + $ WORK( N2*M+N2+2 ), T( N2+1, N2+1 ), + $ T( M, M-1 ) ) + WORK( M*M ) = WORK( N2*M+N2+1 ) + WORK( M*M-1 ) = -WORK( N2*M+N2+2 ) + T( M, M ) = T( N2+1, N2+1 ) + T( M-1, M ) = -T( M, M-1 ) + END IF + CALL GDGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2), + $ LDA, ZERO, WORK( M*M+1 ), N2 ) + CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ), + $ LDA ) + CALL GDGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2), + $ LDB, ZERO, WORK( M*M+1 ), N2 ) + CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ), + $ LDB ) + CALL GDGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO, + $ WORK( M*M+1 ), M ) + CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST ) + CALL GDGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA, + $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 ) + CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA ) + CALL GDGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB, + $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 ) + CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB ) + CALL GDGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO, + $ WORK, M ) + CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST ) +* +* Accumulate transformations into Q and Z if requested. +* + IF( WANTQ ) THEN + CALL GDGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI, + $ LDST, ZERO, WORK, N ) + CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ ) +* + END IF +* + IF( WANTZ ) THEN + CALL GDGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR, + $ LDST, ZERO, WORK, N ) + CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ ) +* + END IF +* +* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and +* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). +* + I = J1 + M + IF( I.LE.N ) THEN + CALL GDGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST, + $ A( J1, I ), LDA, ZERO, WORK, M ) + CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA ) + CALL GDGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST, + $ B( J1, I ), LDB, ZERO, WORK, M ) + CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB ) + END IF + I = J1 - 1 + IF( I.GT.0 ) THEN + CALL GDGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR, + $ LDST, ZERO, WORK, I ) + CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA ) + CALL GDGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR, + $ LDST, ZERO, WORK, I ) + CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB ) + END IF +* +* Exit with INFO = 0 if swap was successfully performed. +* + RETURN +* + END IF +* +* Exit with INFO = 1 if swap was rejected. +* + 70 CONTINUE +* + INFO = 1 + RETURN +* +* End of GDTGEX2 +* + END diff --git a/src/Fortran/gdtgexc.f b/src/Fortran/gdtgexc.f new file mode 100644 index 00000000..793ee90e --- /dev/null +++ b/src/Fortran/gdtgexc.f @@ -0,0 +1,544 @@ +*> \brief \b GDTGEXC +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download GDTGEXC + dependencies +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgexc.f"> +*> [TGZ]</a> +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgexc.f"> +*> [ZIP]</a> +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgexc.f"> +*> [TXT]</a> +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE GDTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, +* LDZ, IFST, ILST, WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* LOGICAL WANTQ, WANTZ +* INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), +* $ WORK( * ), Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> GDTGEXC reorders the generalized real Schur decomposition of a real +*> matrix pair (A,B) using an orthogonal equivalence transformation +*> +*> (A, B) = Q * (A, B) * Z**T, +*> +*> so that the diagonal block of (A, B) with row index IFST is moved +*> to row ILST. +*> +*> (A, B) must be in generalized real Schur canonical form (as returned +*> by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 +*> diagonal blocks. B is upper triangular. +*> +*> Optionally, the matrices Q and Z of generalized Schur vectors are +*> updated. +*> +*> Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T +*> Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T +*> +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] WANTQ +*> \verbatim +*> WANTQ is LOGICAL +*> .TRUE. : update the left transformation matrix Q; +*> .FALSE.: do not update Q. +*> \endverbatim +*> +*> \param[in] WANTZ +*> \verbatim +*> WANTZ is LOGICAL +*> .TRUE. : update the right transformation matrix Z; +*> .FALSE.: do not update Z. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrices A and B. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the matrix A in generalized real Schur canonical +*> form. +*> On exit, the updated matrix A, again in generalized +*> real Schur canonical form. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension (LDB,N) +*> On entry, the matrix B in generalized real Schur canonical +*> form (A,B). +*> On exit, the updated matrix B, again in generalized +*> real Schur canonical form (A,B). +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] Q +*> \verbatim +*> Q is DOUBLE PRECISION array, dimension (LDQ,N) +*> On entry, if WANTQ = .TRUE., the orthogonal matrix Q. +*> On exit, the updated matrix Q. +*> If WANTQ = .FALSE., Q is not referenced. +*> \endverbatim +*> +*> \param[in] LDQ +*> \verbatim +*> LDQ is INTEGER +*> The leading dimension of the array Q. LDQ >= 1. +*> If WANTQ = .TRUE., LDQ >= N. +*> \endverbatim +*> +*> \param[in,out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ,N) +*> On entry, if WANTZ = .TRUE., the orthogonal matrix Z. +*> On exit, the updated matrix Z. +*> If WANTZ = .FALSE., Z is not referenced. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1. +*> If WANTZ = .TRUE., LDZ >= N. +*> \endverbatim +*> +*> \param[in,out] IFST +*> \verbatim +*> IFST is INTEGER +*> \endverbatim +*> +*> \param[in,out] ILST +*> \verbatim +*> ILST is INTEGER +*> Specify the reordering of the diagonal blocks of (A, B). +*> The block with row index IFST is moved to row ILST, by a +*> sequence of swapping between adjacent blocks. +*> On exit, if IFST pointed on entry to the second row of +*> a 2-by-2 block, it is changed to point to the first row; +*> ILST always points to the first row of the block in its +*> final position (which may differ from its input value by +*> +1 or -1). 1 <= IFST, ILST <= N. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> =0: successful exit. +*> <0: if INFO = -i, the i-th argument had an illegal value. +*> =1: The transformed matrix pair (A, B) would be too far +*> from generalized Schur form; the problem is ill- +*> conditioned. (A, B) may have been partially reordered, +*> and ILST points to the first row of the current +*> position of the block being moved. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleGEcomputational +* +*> \par Contributors: +* ================== +*> +*> Bo Kagstrom and Peter Poromaa, Department of Computing Science, +*> Umea University, S-901 87 Umea, Sweden. +* +*> \par References: +* ================ +*> +*> \verbatim +*> +*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the +*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in +*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and +*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE GDTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, IFST, ILST, WORK, LWORK, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + LOGICAL WANTQ, WANTZ + INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), + $ WORK( * ), Z( LDZ, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER HERE, LWMIN, NBF, NBL, NBNEXT +* .. +* .. External Subroutines .. + EXTERNAL GDTGEX2, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Decode and test input arguments. +* + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) + IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -7 + ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN + INFO = -9 + ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN + INFO = -11 + ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN + INFO = -12 + ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN + INFO = -13 + END IF +* + IF( INFO.EQ.0 ) THEN + IF( N.LE.1 ) THEN + LWMIN = 1 + ELSE + LWMIN = 4*N + 16 + END IF + WORK(1) = LWMIN +* + IF (LWORK.LT.LWMIN .AND. .NOT.LQUERY) THEN + INFO = -15 + END IF + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'GDTGEXC', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( N.LE.1 ) + $ RETURN +* +* Determine the first row of the specified block and find out +* if it is 1-by-1 or 2-by-2. +* + IF( IFST.GT.1 ) THEN + IF( A( IFST, IFST-1 ).NE.ZERO ) + $ IFST = IFST - 1 + END IF + NBF = 1 + IF( IFST.LT.N ) THEN + IF( A( IFST+1, IFST ).NE.ZERO ) + $ NBF = 2 + END IF +* +* Determine the first row of the final block +* and find out if it is 1-by-1 or 2-by-2. +* + IF( ILST.GT.1 ) THEN + IF( A( ILST, ILST-1 ).NE.ZERO ) + $ ILST = ILST - 1 + END IF + NBL = 1 + IF( ILST.LT.N ) THEN + IF( A( ILST+1, ILST ).NE.ZERO ) + $ NBL = 2 + END IF + IF( IFST.EQ.ILST ) + $ RETURN +* + IF( IFST.LT.ILST ) THEN +* +* Update ILST. +* + IF( NBF.EQ.2 .AND. NBL.EQ.1 ) + $ ILST = ILST - 1 + IF( NBF.EQ.1 .AND. NBL.EQ.2 ) + $ ILST = ILST + 1 +* + HERE = IFST +* + 10 CONTINUE +* +* Swap with next one below. +* + IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN +* +* Current block either 1-by-1 or 2-by-2. +* + NBNEXT = 1 + IF( HERE+NBF+1.LE.N ) THEN + IF( A( HERE+NBF+1, HERE+NBF ).NE.ZERO ) + $ NBNEXT = 2 + END IF + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, HERE, NBF, NBNEXT, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE + NBNEXT +* +* Test if 2-by-2 block breaks into two 1-by-1 blocks. +* + IF( NBF.EQ.2 ) THEN + IF( A( HERE+1, HERE ).EQ.ZERO ) + $ NBF = 3 + END IF +* + ELSE +* +* Current block consists of two 1-by-1 blocks, each of which +* must be swapped individually. +* + NBNEXT = 1 + IF( HERE+3.LE.N ) THEN + IF( A( HERE+3, HERE+2 ).NE.ZERO ) + $ NBNEXT = 2 + END IF + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, HERE+1, 1, NBNEXT, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + IF( NBNEXT.EQ.1 ) THEN +* +* Swap two 1-by-1 blocks. +* + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, HERE, 1, 1, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE + 1 +* + ELSE +* +* Recompute NBNEXT in case of 2-by-2 split. +* + IF( A( HERE+2, HERE+1 ).EQ.ZERO ) + $ NBNEXT = 1 + IF( NBNEXT.EQ.2 ) THEN +* +* 2-by-2 block did not split. +* + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, + $ Z, LDZ, HERE, 1, NBNEXT, WORK, LWORK, + $ INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE + 2 + ELSE +* +* 2-by-2 block did split. +* + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, + $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE + 1 + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, + $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE + 1 + END IF +* + END IF + END IF + IF( HERE.LT.ILST ) + $ GO TO 10 + ELSE + HERE = IFST +* + 20 CONTINUE +* +* Swap with next one below. +* + IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN +* +* Current block either 1-by-1 or 2-by-2. +* + NBNEXT = 1 + IF( HERE.GE.3 ) THEN + IF( A( HERE-1, HERE-2 ).NE.ZERO ) + $ NBNEXT = 2 + END IF + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, HERE-NBNEXT, NBNEXT, NBF, WORK, LWORK, + $ INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE - NBNEXT +* +* Test if 2-by-2 block breaks into two 1-by-1 blocks. +* + IF( NBF.EQ.2 ) THEN + IF( A( HERE+1, HERE ).EQ.ZERO ) + $ NBF = 3 + END IF +* + ELSE +* +* Current block consists of two 1-by-1 blocks, each of which +* must be swapped individually. +* + NBNEXT = 1 + IF( HERE.GE.3 ) THEN + IF( A( HERE-1, HERE-2 ).NE.ZERO ) + $ NBNEXT = 2 + END IF + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, HERE-NBNEXT, NBNEXT, 1, WORK, LWORK, + $ INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + IF( NBNEXT.EQ.1 ) THEN +* +* Swap two 1-by-1 blocks. +* + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, HERE, NBNEXT, 1, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE - 1 + ELSE +* +* Recompute NBNEXT in case of 2-by-2 split. +* + IF( A( HERE, HERE-1 ).EQ.ZERO ) + $ NBNEXT = 1 + IF( NBNEXT.EQ.2 ) THEN +* +* 2-by-2 block did not split. +* + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, + $ Z, LDZ, HERE-1, 2, 1, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE - 2 + ELSE +* +* 2-by-2 block did split. +* + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, + $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE - 1 + CALL GDTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, + $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) + IF( INFO.NE.0 ) THEN + ILST = HERE + RETURN + END IF + HERE = HERE - 1 + END IF + END IF + END IF + IF( HERE.GT.ILST ) + $ GO TO 20 + END IF + ILST = HERE + WORK( 1 ) = LWMIN + RETURN +* +* End of GDTGEXC +* + END diff --git a/src/Fortran/gdtgsen.f b/src/Fortran/gdtgsen.f new file mode 100644 index 00000000..2109a058 --- /dev/null +++ b/src/Fortran/gdtgsen.f @@ -0,0 +1,866 @@ +*> \brief \b GDTGSEN +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download GDTGSEN + dependencies +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsen.f"> +*> [TGZ]</a> +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsen.f"> +*> [ZIP]</a> +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsen.f"> +*> [TXT]</a> +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE GDTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, +* ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, +* PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO ) +* +* .. Scalar Arguments .. +* LOGICAL WANTQ, WANTZ +* INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK, +* $ M, N +* DOUBLE PRECISION PL, PR +* .. +* .. Array Arguments .. +* LOGICAL SELECT( * ) +* INTEGER IWORK( * ) +* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), +* $ B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ), +* $ WORK( * ), Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> GDTGSEN reorders the generalized real Schur decomposition of a real +*> matrix pair (A, B) (in terms of an orthonormal equivalence trans- +*> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues +*> appears in the leading diagonal blocks of the upper quasi-triangular +*> matrix A and the upper triangular B. The leading columns of Q and +*> Z form orthonormal bases of the corresponding left and right eigen- +*> spaces (deflating subspaces). (A, B) must be in generalized real +*> Schur canonical form (as returned by DGGES), i.e. A is block upper +*> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper +*> triangular. +*> +*> GDTGSEN also computes the generalized eigenvalues +*> +*> w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) +*> +*> of the reordered matrix pair (A, B). +*> +*> Optionally, GDTGSEN computes the estimates of reciprocal condition +*> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), +*> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) +*> between the matrix pairs (A11, B11) and (A22,B22) that correspond to +*> the selected cluster and the eigenvalues outside the cluster, resp., +*> and norms of "projections" onto left and right eigenspaces w.r.t. +*> the selected cluster in the (1,1)-block. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] IJOB +*> \verbatim +*> IJOB is INTEGER +*> Specifies whether condition numbers are required for the +*> cluster of eigenvalues (PL and PR) or the deflating subspaces +*> (Difu and Difl): +*> =0: Only reorder w.r.t. SELECT. No extras. +*> =1: Reciprocal of norms of "projections" onto left and right +*> eigenspaces w.r.t. the selected cluster (PL and PR). +*> =2: Upper bounds on Difu and Difl. F-norm-based estimate +*> (DIF(1:2)). +*> =3: Estimate of Difu and Difl. 1-norm-based estimate +*> (DIF(1:2)). +*> About 5 times as expensive as IJOB = 2. +*> =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic +*> version to get it all. +*> =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) +*> \endverbatim +*> +*> \param[in] WANTQ +*> \verbatim +*> WANTQ is LOGICAL +*> .TRUE. : update the left transformation matrix Q; +*> .FALSE.: do not update Q. +*> \endverbatim +*> +*> \param[in] WANTZ +*> \verbatim +*> WANTZ is LOGICAL +*> .TRUE. : update the right transformation matrix Z; +*> .FALSE.: do not update Z. +*> \endverbatim +*> +*> \param[in] SELECT +*> \verbatim +*> SELECT is LOGICAL array, dimension (N) +*> SELECT specifies the eigenvalues in the selected cluster. +*> To select a real eigenvalue w(j), SELECT(j) must be set to +*> .TRUE.. To select a complex conjugate pair of eigenvalues +*> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, +*> either SELECT(j) or SELECT(j+1) or both must be set to +*> .TRUE.; a complex conjugate pair of eigenvalues must be +*> either both included in the cluster or both excluded. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrices A and B. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension(LDA,N) +*> On entry, the upper quasi-triangular matrix A, with (A, B) in +*> generalized real Schur canonical form. +*> On exit, A is overwritten by the reordered matrix A. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension(LDB,N) +*> On entry, the upper triangular matrix B, with (A, B) in +*> generalized real Schur canonical form. +*> On exit, B is overwritten by the reordered matrix B. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[out] ALPHAR +*> \verbatim +*> ALPHAR is DOUBLE PRECISION array, dimension (N) +*> \endverbatim +*> +*> \param[out] ALPHAI +*> \verbatim +*> ALPHAI is DOUBLE PRECISION array, dimension (N) +*> \endverbatim +*> +*> \param[out] BETA +*> \verbatim +*> BETA is DOUBLE PRECISION array, dimension (N) +*> +*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will +*> be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i +*> and BETA(j),j=1,...,N are the diagonals of the complex Schur +*> form (S,T) that would result if the 2-by-2 diagonal blocks of +*> the real generalized Schur form of (A,B) were further reduced +*> to triangular form using complex unitary transformations. +*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if +*> positive, then the j-th and (j+1)-st eigenvalues are a +*> complex conjugate pair, with ALPHAI(j+1) negative. +*> \endverbatim +*> +*> \param[in,out] Q +*> \verbatim +*> Q is DOUBLE PRECISION array, dimension (LDQ,N) +*> On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. +*> On exit, Q has been postmultiplied by the left orthogonal +*> transformation matrix which reorder (A, B); The leading M +*> columns of Q form orthonormal bases for the specified pair of +*> left eigenspaces (deflating subspaces). +*> If WANTQ = .FALSE., Q is not referenced. +*> \endverbatim +*> +*> \param[in] LDQ +*> \verbatim +*> LDQ is INTEGER +*> The leading dimension of the array Q. LDQ >= 1; +*> and if WANTQ = .TRUE., LDQ >= N. +*> \endverbatim +*> +*> \param[in,out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ,N) +*> On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. +*> On exit, Z has been postmultiplied by the left orthogonal +*> transformation matrix which reorder (A, B); The leading M +*> columns of Z form orthonormal bases for the specified pair of +*> left eigenspaces (deflating subspaces). +*> If WANTZ = .FALSE., Z is not referenced. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1; +*> If WANTZ = .TRUE., LDZ >= N. +*> \endverbatim +*> +*> \param[out] M +*> \verbatim +*> M is INTEGER +*> The dimension of the specified pair of left and right eigen- +*> spaces (deflating subspaces). 0 <= M <= N. +*> \endverbatim +*> +*> \param[out] PL +*> \verbatim +*> PL is DOUBLE PRECISION +*> \endverbatim + +*> \param[out] PR +*> \verbatim +*> PR is DOUBLE PRECISION +*> +*> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the +*> reciprocal of the norm of "projections" onto left and right +*> eigenspaces with respect to the selected cluster. +*> 0 < PL, PR <= 1. +*> If M = 0 or M = N, PL = PR = 1. +*> If IJOB = 0, 2 or 3, PL and PR are not referenced. +*> \endverbatim +*> +*> \param[out] DIF +*> \verbatim +*> DIF is DOUBLE PRECISION array, dimension (2). +*> If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. +*> If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on +*> Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based +*> estimates of Difu and Difl. +*> If M = 0 or N, DIF(1:2) = F-norm([A, B]). +*> If IJOB = 0 or 1, DIF is not referenced. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, +*> dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= 4*N+16. +*> If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). +*> If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) +*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. +*> \endverbatim +*> +*> \param[in] LIWORK +*> \verbatim +*> LIWORK is INTEGER +*> The dimension of the array IWORK. LIWORK >= 1. +*> If IJOB = 1, 2 or 4, LIWORK >= N+6. +*> If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). +*> +*> If LIWORK = -1, then a workspace query is assumed; the +*> routine only calculates the optimal size of the IWORK array, +*> returns this value as the first entry of the IWORK array, and +*> no error message related to LIWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> =0: Successful exit. +*> <0: If INFO = -i, the i-th argument had an illegal value. +*> =1: Reordering of (A, B) failed because the transformed +*> matrix pair (A, B) would be too far from generalized +*> Schur form; the problem is very ill-conditioned. +*> (A, B) may have been partially reordered. +*> If requested, 0 is returned in DIF(*), PL and PR. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup doubleOTHERcomputational +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> GDTGSEN first collects the selected eigenvalues by computing +*> orthogonal U and W that move them to the top left corner of (A, B). +*> In other words, the selected eigenvalues are the eigenvalues of +*> (A11, B11) in: +*> +*> U**T*(A, B)*W = (A11 A12) (B11 B12) n1 +*> ( 0 A22),( 0 B22) n2 +*> n1 n2 n1 n2 +*> +*> where N = n1+n2 and U**T means the transpose of U. The first n1 columns +*> of U and W span the specified pair of left and right eigenspaces +*> (deflating subspaces) of (A, B). +*> +*> If (A, B) has been obtained from the generalized real Schur +*> decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the +*> reordered generalized real Schur form of (C, D) is given by +*> +*> (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T, +*> +*> and the first n1 columns of Q*U and Z*W span the corresponding +*> deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). +*> +*> Note that if the selected eigenvalue is sufficiently ill-conditioned, +*> then its value may differ significantly from its value before +*> reordering. +*> +*> The reciprocal condition numbers of the left and right eigenspaces +*> spanned by the first n1 columns of U and W (or Q*U and Z*W) may +*> be returned in DIF(1:2), corresponding to Difu and Difl, resp. +*> +*> The Difu and Difl are defined as: +*> +*> Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) +*> and +*> Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], +*> +*> where sigma-min(Zu) is the smallest singular value of the +*> (2*n1*n2)-by-(2*n1*n2) matrix +*> +*> Zu = [ kron(In2, A11) -kron(A22**T, In1) ] +*> [ kron(In2, B11) -kron(B22**T, In1) ]. +*> +*> Here, Inx is the identity matrix of size nx and A22**T is the +*> transpose of A22. kron(X, Y) is the Kronecker product between +*> the matrices X and Y. +*> +*> When DIF(2) is small, small changes in (A, B) can cause large changes +*> in the deflating subspace. An approximate (asymptotic) bound on the +*> maximum angular error in the computed deflating subspaces is +*> +*> EPS * norm((A, B)) / DIF(2), +*> +*> where EPS is the machine precision. +*> +*> The reciprocal norm of the projectors on the left and right +*> eigenspaces associated with (A11, B11) may be returned in PL and PR. +*> They are computed as follows. First we compute L and R so that +*> P*(A, B)*Q is block diagonal, where +*> +*> P = ( I -L ) n1 Q = ( I R ) n1 +*> ( 0 I ) n2 and ( 0 I ) n2 +*> n1 n2 n1 n2 +*> +*> and (L, R) is the solution to the generalized Sylvester equation +*> +*> A11*R - L*A22 = -A12 +*> B11*R - L*B22 = -B12 +*> +*> Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). +*> An approximate (asymptotic) bound on the average absolute error of +*> the selected eigenvalues is +*> +*> EPS * norm((A, B)) / PL. +*> +*> There are also global error bounds which valid for perturbations up +*> to a certain restriction: A lower bound (x) on the smallest +*> F-norm(E,F) for which an eigenvalue of (A11, B11) may move and +*> coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), +*> (i.e. (A + E, B + F), is +*> +*> x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). +*> +*> An approximate bound on x can be computed from DIF(1:2), PL and PR. +*> +*> If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed +*> (L', R') and unperturbed (L, R) left and right deflating subspaces +*> associated with the selected cluster in the (1,1)-blocks can be +*> bounded as +*> +*> max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) +*> max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) +*> +*> See LAPACK User's Guide section 4.11 or the following references +*> for more information. +*> +*> Note that if the default method for computing the Frobenius-norm- +*> based estimate DIF is not wanted (see DLATDF), then the parameter +*> IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF +*> (IJOB = 2 will be used)). See DTGSYL for more details. +*> \endverbatim +* +*> \par Contributors: +* ================== +*> +*> Bo Kagstrom and Peter Poromaa, Department of Computing Science, +*> Umea University, S-901 87 Umea, Sweden. +* +*> \par References: +* ================ +*> +*> \verbatim +*> +*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the +*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in +*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and +*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. +*> +*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified +*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition +*> Estimation: Theory, Algorithms and Software, +*> Report UMINF - 94.04, Department of Computing Science, Umea +*> University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working +*> Note 87. To appear in Numerical Algorithms, 1996. +*> +*> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software +*> for Solving the Generalized Sylvester Equation and Estimating the +*> Separation between Regular Matrix Pairs, Report UMINF - 93.23, +*> Department of Computing Science, Umea University, S-901 87 Umea, +*> Sweden, December 1993, Revised April 1994, Also as LAPACK Working +*> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, +*> 1996. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE GDTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, + $ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, + $ PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO ) +* +* -- LAPACK computational routine (version 3.6.1) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 +* +* .. Scalar Arguments .. + LOGICAL WANTQ, WANTZ + INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK, + $ M, N + DOUBLE PRECISION PL, PR +* .. +* .. Array Arguments .. + LOGICAL SELECT( * ) + INTEGER IWORK( * ) + DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), + $ B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ), + $ WORK( * ), Z( LDZ, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + INTEGER IDIFJB + PARAMETER ( IDIFJB = 3 ) + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2, + $ WANTP + INTEGER I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN, + $ MN2, N1, N2 + DOUBLE PRECISION DSCALE, DSUM, EPS, RDSCAL, SMLNUM +* .. +* .. Local Arrays .. + INTEGER ISAVE( 3 ) +* .. +* .. External Subroutines .. + EXTERNAL DLACN2, DLACPY, DLAG2, DLASSQ, GDTGEXC, DTGSYL, + $ XERBLA +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, SIGN, SQRT +* .. +* .. Executable Statements .. +* +* Decode and test the input parameters +* + INFO = 0 + LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) +* + IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -5 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -7 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -9 + ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN + INFO = -14 + ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN + INFO = -16 + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'GDTGSEN', -INFO ) + RETURN + END IF +* +* Get machine constants +* + EPS = DLAMCH( 'P' ) + SMLNUM = DLAMCH( 'S' ) / EPS + IERR = 0 +* + WANTP = IJOB.EQ.1 .OR. IJOB.GE.4 + WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4 + WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5 + WANTD = WANTD1 .OR. WANTD2 +* +* Set M to the dimension of the specified pair of deflating +* subspaces. +* + M = 0 + PAIR = .FALSE. + IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN + DO 10 K = 1, N + IF( PAIR ) THEN + PAIR = .FALSE. + ELSE + IF( K.LT.N ) THEN + IF( A( K+1, K ).EQ.ZERO ) THEN + IF( SELECT( K ) ) + $ M = M + 1 + ELSE + PAIR = .TRUE. + IF( SELECT( K ) .OR. SELECT( K+1 ) ) + $ M = M + 2 + END IF + ELSE + IF( SELECT( N ) ) + $ M = M + 1 + END IF + END IF + 10 CONTINUE + END IF +* + IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN + LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) ) + LIWMIN = MAX( 1, N+6 ) + ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN + LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) ) + LIWMIN = MAX( 1, 2*M*( N-M ), N+6 ) + ELSE + LWMIN = MAX( 1, 4*N+16 ) + LIWMIN = 1 + END IF +* + WORK( 1 ) = LWMIN + IWORK( 1 ) = LIWMIN +* + IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN + INFO = -22 + ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN + INFO = -24 + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'GDTGSEN', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible. +* + IF( M.EQ.N .OR. M.EQ.0 ) THEN + IF( WANTP ) THEN + PL = ONE + PR = ONE + END IF + IF( WANTD ) THEN + DSCALE = ZERO + DSUM = ONE + DO 20 I = 1, N + CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM ) + CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM ) + 20 CONTINUE + DIF( 1 ) = DSCALE*SQRT( DSUM ) + DIF( 2 ) = DIF( 1 ) + END IF + GO TO 60 + END IF +* +* Collect the selected blocks at the top-left corner of (A, B). +* + KS = 0 + PAIR = .FALSE. + DO 30 K = 1, N + IF( PAIR ) THEN + PAIR = .FALSE. + ELSE +* + SWAP = SELECT( K ) + IF( K.LT.N ) THEN + IF( A( K+1, K ).NE.ZERO ) THEN + PAIR = .TRUE. + SWAP = SWAP .OR. SELECT( K+1 ) + END IF + END IF +* + IF( SWAP ) THEN + KS = KS + 1 +* +* Swap the K-th block to position KS. +* Perform the reordering of diagonal blocks in (A, B) +* by orthogonal transformation matrices and update +* Q and Z accordingly (if requested): +* + KK = K + IF( K.NE.KS ) + $ CALL GDTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, + $ Z, LDZ, KK, KS, WORK, LWORK, IERR ) +* + IF( IERR.GT.0 ) THEN +* +* Swap is rejected: exit. +* + INFO = 1 + IF( WANTP ) THEN + PL = ZERO + PR = ZERO + END IF + IF( WANTD ) THEN + DIF( 1 ) = ZERO + DIF( 2 ) = ZERO + END IF + GO TO 60 + END IF +* + IF( PAIR ) + $ KS = KS + 1 + END IF + END IF + 30 CONTINUE + IF( WANTP ) THEN +* +* Solve generalized Sylvester equation for R and L +* and compute PL and PR. +* + N1 = M + N2 = N - M + I = N1 + 1 + IJB = 0 + CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 ) + CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ), + $ N1 ) + CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK, + $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1, + $ DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ), + $ LWORK-2*N1*N2, IWORK, IERR ) +* +* Estimate the reciprocal of norms of "projections" onto left +* and right eigenspaces. +* + RDSCAL = ZERO + DSUM = ONE + CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM ) + PL = RDSCAL*SQRT( DSUM ) + IF( PL.EQ.ZERO ) THEN + PL = ONE + ELSE + PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) ) + END IF + RDSCAL = ZERO + DSUM = ONE + CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM ) + PR = RDSCAL*SQRT( DSUM ) + IF( PR.EQ.ZERO ) THEN + PR = ONE + ELSE + PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) ) + END IF + END IF +* + IF( WANTD ) THEN +* +* Compute estimates of Difu and Difl. +* + IF( WANTD1 ) THEN + N1 = M + N2 = N - M + I = N1 + 1 + IJB = IDIFJB +* +* Frobenius norm-based Difu-estimate. +* + CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK, + $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), + $ N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ), + $ LWORK-2*N1*N2, IWORK, IERR ) +* +* Frobenius norm-based Difl-estimate. +* + CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK, + $ N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ), + $ N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ), + $ LWORK-2*N1*N2, IWORK, IERR ) + ELSE +* +* +* Compute 1-norm-based estimates of Difu and Difl using +* reversed communication with DLACN2. In each step a +* generalized Sylvester equation or a transposed variant +* is solved. +* + KASE = 0 + N1 = M + N2 = N - M + I = N1 + 1 + IJB = 0 + MN2 = 2*N1*N2 +* +* 1-norm-based estimate of Difu. +* + 40 CONTINUE + CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ), + $ KASE, ISAVE ) + IF( KASE.NE.0 ) THEN + IF( KASE.EQ.1 ) THEN +* +* Solve generalized Sylvester equation. +* + CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, + $ WORK, N1, B, LDB, B( I, I ), LDB, + $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ), + $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK, + $ IERR ) + ELSE +* +* Solve the transposed variant. +* + CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA, + $ WORK, N1, B, LDB, B( I, I ), LDB, + $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ), + $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK, + $ IERR ) + END IF + GO TO 40 + END IF + DIF( 1 ) = DSCALE / DIF( 1 ) +* +* 1-norm-based estimate of Difl. +* + 50 CONTINUE + CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ), + $ KASE, ISAVE ) + IF( KASE.NE.0 ) THEN + IF( KASE.EQ.1 ) THEN +* +* Solve generalized Sylvester equation. +* + CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, + $ WORK, N2, B( I, I ), LDB, B, LDB, + $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ), + $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK, + $ IERR ) + ELSE +* +* Solve the transposed variant. +* + CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA, + $ WORK, N2, B( I, I ), LDB, B, LDB, + $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ), + $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK, + $ IERR ) + END IF + GO TO 50 + END IF + DIF( 2 ) = DSCALE / DIF( 2 ) +* + END IF + END IF +* + 60 CONTINUE +* +* Compute generalized eigenvalues of reordered pair (A, B) and +* normalize the generalized Schur form. +* + PAIR = .FALSE. + DO 80 K = 1, N + IF( PAIR ) THEN + PAIR = .FALSE. + ELSE +* + IF( K.LT.N ) THEN + IF( A( K+1, K ).NE.ZERO ) THEN + PAIR = .TRUE. + END IF + END IF +* + IF( PAIR ) THEN +* +* Compute the eigenvalue(s) at position K. +* + WORK( 1 ) = A( K, K ) + WORK( 2 ) = A( K+1, K ) + WORK( 3 ) = A( K, K+1 ) + WORK( 4 ) = A( K+1, K+1 ) + WORK( 5 ) = B( K, K ) + WORK( 6 ) = B( K+1, K ) + WORK( 7 ) = B( K, K+1 ) + WORK( 8 ) = B( K+1, K+1 ) + CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ), + $ BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ), + $ ALPHAI( K ) ) + ALPHAI( K+1 ) = -ALPHAI( K ) +* + ELSE +* + IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN +* +* If B(K,K) is negative, make it positive +* + DO 70 I = 1, N + A( K, I ) = -A( K, I ) + B( K, I ) = -B( K, I ) + IF( WANTQ ) Q( I, K ) = -Q( I, K ) + 70 CONTINUE + END IF +* + ALPHAR( K ) = A( K, K ) + ALPHAI( K ) = ZERO + BETA( K ) = B( K, K ) +* + END IF + END IF + 80 CONTINUE +* + WORK( 1 ) = LWMIN + IWORK( 1 ) = LIWMIN +* + RETURN +* +* End of GDTGSEN +* + END diff --git a/src/PreviewControl/OptimalControllerSolver.cpp b/src/PreviewControl/OptimalControllerSolver.cpp index 2e22aa4b..d4da3c8a 100644 --- a/src/PreviewControl/OptimalControllerSolver.cpp +++ b/src/PreviewControl/OptimalControllerSolver.cpp @@ -44,7 +44,7 @@ typedef int integer ; extern "C" { extern doublereal dlapy2_(doublereal *, doublereal *); extern double dlamch_ (char *); -extern /* Subroutine */ int dgges_(char *, char *, char *, L_fp, integer * +extern /* Subroutine */ int gdgges_(char *, char *, char *, L_fp, integer * , doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, logical *, @@ -163,7 +163,7 @@ bool OptimalControllerSolver::GeneralizedSchur(MAL_MATRIX( &A,double), bwork[i] =0; A = MAL_RET_TRANSPOSE(A); B = MAL_RET_TRANSPOSE(B); - dgges_ (lV, lV, + gdgges_ (lV, lV, lS, (logical (*)(...))sb02ox, &n, diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 630403bb..c9959a86 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -75,6 +75,8 @@ ADD_EXECUTABLE(TestRiccatiEquation ) # Need this dependency for the use of the fortran functions (it seems) PKG_CONFIG_USE_DEPENDENCY(TestRiccatiEquation jrl-mal) +TARGET_LINK_LIBRARIES(TestRiccatiEquation sublapack) + # Add test on the ricatti equation ADD_TEST(TestRiccatiEquation TestRiccatiEquation) -- GitLab