Commit 879a9033 authored by Pierre Fernbach's avatar Pierre Fernbach
Browse files

Add a sinusoidal class

parent cfb7ad54
......@@ -67,6 +67,7 @@ SET(${PROJECT_NAME}_HEADERS
include/${PROJECT_NAME}/piecewise_curve.h
include/${PROJECT_NAME}/so3_linear.h
include/${PROJECT_NAME}/se3_curve.h
include/${PROJECT_NAME}/sinusoidal.h
include/${PROJECT_NAME}/fwd.h
include/${PROJECT_NAME}/constant_curve.h
include/${PROJECT_NAME}/helpers/effector_spline.h
......
......@@ -39,6 +39,9 @@ struct polynomial;
template <typename Time, typename Numeric, bool Safe>
struct SE3Curve;
template <typename Time, typename Numeric, bool Safe, typename Point>
struct sinusoidal;
template <typename Time, typename Numeric, bool Safe>
struct SO3Linear;
......@@ -87,6 +90,7 @@ typedef bezier_curve<double, double, true, pointX_t> bezier_t;
typedef constant_curve<double, double, true, pointX_t, pointX_t> constant_t;
typedef cubic_hermite_spline<double, double, true, pointX_t> cubic_hermite_spline_t;
typedef piecewise_curve<double, double, true, pointX_t, pointX_t, curve_abc_t> piecewise_t;
typedef sinusoidal<double, double, true, pointX_t> sinusoidal_t;
// definition of all curves class with point3 as return type:
typedef polynomial<double, double, true, point3_t, t_point3_t> polynomial3_t;
......
......@@ -16,6 +16,7 @@
#include "curves/curve_abc.h"
#include "curves/so3_linear.h"
#include "curves/se3_curve.h"
#include "curves/sinusoidal.h"
#include "curves/polynomial.h"
#include "curves/bezier_curve.h"
#include "curves/constant_curve.h"
......
......@@ -46,6 +46,7 @@ void register_types(Archive& ar) {
ar.template register_type<piecewise3_t>();
ar.template register_type<SO3Linear_t>();
ar.template register_type<SE3Curve_t>();
ar.template register_type<sinusoidal_t>();
ar.template register_type<piecewise_SE3_t>();
}
......
/**
* \file sinusoidal.h
* \brief class allowing to create a sinusoidal curve.
* \author Pierre Fernbach
* \version 0.4
* \date 29/04/2020
*/
#ifndef _CLASS_SINUSOIDALCURVE
#define _CLASS_SINUSOIDALCURVE
#include "curve_abc.h"
#include <cmath>
namespace curves {
/// \class sinusoidal.
/// \brief Represents a sinusoidal curve, evaluating the following equation:
/// p0 + amplitude * (sin(2pi/T + phi)
///
template <typename Time = double, typename Numeric = Time, bool Safe = false,
typename Point = Eigen::Matrix<Numeric, Eigen::Dynamic, 1> >
struct sinusoidal : public curve_abc<Time, Numeric, Safe, Point> {
typedef Point point_t;
typedef Point point_derivate_t;
typedef Time time_t;
typedef Numeric num_t;
typedef sinusoidal<Time, Numeric, Safe, Point> sinusoidal_t;
typedef curve_abc<Time, Numeric, Safe, Point> curve_abc_t; // parent class
/* Constructors - destructors */
public:
/// \brief Empty constructor. Curve obtained this way can not perform other class functions.
///
sinusoidal() : T_min_(0), T_max_(0), dim_(0) {}
/// \brief Constructor
/// \param p0 : Offset of the sinusoidal
/// \param amplitude: Amplitude
/// \param T : The period
/// \param phi : the phase
/// \param T_min : lower bound of the time interval (default to 0)
/// \param T_max : upper bound of the time interval (default to +inf)
///
sinusoidal(const Point& p0, const Point& amplitude, const time_t T, const time_t phi, const time_t T_min = 0., const time_t T_max = std::numeric_limits<time_t>::max())
: p0_(p0),
amplitude_(amplitude),
T_(T),
phi_(std::fmod(phi, 2.*M_PI)),
T_min_(T_min),
T_max_(T_max),
dim_(p0_.size())
{
if(Safe && T_min_ > T_max_){
throw std::invalid_argument("can't create constant curve: min bound is higher than max bound");
}
if(T_ <= 0.)
throw std::invalid_argument("The period must be strictly positive");
if(static_cast<size_t>(amplitude_.size()) != dim_)
throw std::invalid_argument("The offset and the amplitude must have the same dimension");
}
/// \brief Constructor from stationary points
/// \param traj_time: duration to go from p_init to p_final (half a period)
/// \param p_init : first stationary point, either minimum or maximum
/// \param p_final : second stationary point, either minimum or maximum
/// \param T_min : lower bound of the time interval (default to 0)
/// \param T_max : upper bound of the time interval (default to +inf)
///
sinusoidal(const time_t traj_time, const Point& p_init, const Point& p_final, const time_t T_min = 0., const time_t T_max = std::numeric_limits<time_t>::max())
: T_(2. * traj_time),
phi_(M_PI/2.),
T_min_(T_min),
T_max_(T_max),
dim_(p_init.size())
{
if(Safe && T_min_ > T_max_){
throw std::invalid_argument("can't create constant curve: min bound is higher than max bound");
}
if(T_ <= 0)
throw std::invalid_argument("The period must be strictly positive");
if(p_init.size() != p_final.size())
throw std::invalid_argument("The two stationary points must have the same dimension");
p0_ = (p_init + p_final) / 2.;
amplitude_ = (p_init - p_final) / 2.;
}
/// \brief Copy constructor
/// \param other
sinusoidal(const sinusoidal_t& other)
: p0_(other.p0_),
amplitude_(other.amplitude_),
T_(other.T_),
phi_(other.phi_),
T_min_(other.T_min_),
T_max_(other.T_max_),
dim_(other.dim_)
{}
/// \brief Destructor.
virtual ~sinusoidal() {}
/* Constructors - destructors */
/*Operations*/
/// \brief Evaluation of the cubic spline at time t.
/// \param t : time when to evaluate the spine
/// \return \f$x(t)\f$, point corresponding on curve at time t.
virtual point_t operator()(const time_t t) const{
if (Safe && (t < T_min_ || t > T_max_)) {
throw std::invalid_argument(
"error in sinusoidal curve : time t to evaluate should be in range [Tmin, Tmax] of the curve");
}
return p0_ + amplitude_ * sin(two_pi_f(t) + phi_);
}
/// \brief Evaluate the derivative of order N of curve at time t.
/// \param t : time when to evaluate the spline.
/// \param order : order of derivative.
/// \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative curve of order N at time t.
virtual point_derivate_t derivate(const time_t t, const std::size_t order) const{
if (Safe && (t < T_min_ || t > T_max_)) {
throw std::invalid_argument(
"error in constant curve : time t to derivate should be in range [Tmin, Tmax] of the curve");
}
if(order <=0)
throw std::invalid_argument("Order must be strictly positive");
return amplitude_ * pow(2. * M_PI / T_, static_cast<num_t>(order)) * sin(two_pi_f(t) + phi_ + (M_PI * static_cast<num_t>(order) / 2.));
}
/// \brief Compute the derived curve at order N.
/// Computes the derivative order N, \f$\frac{d^Nx(t)}{dt^N}\f$ of bezier curve of parametric equation x(t).
/// \param order : order of derivative.
/// \return \f$\frac{d^Nx(t)}{dt^N}\f$ derivative order N of the curve.
sinusoidal_t compute_derivate(const std::size_t order) const {
if(order <=0)
throw std::invalid_argument("Order must be strictly positive");
const point_t amplitude = amplitude_ * pow(2. * M_PI / T_, static_cast<num_t>(order));
const time_t phi = phi_ + (M_PI * static_cast<num_t>(order) / 2.);
return sinusoidal_t(point_t::Zero(dim_), amplitude, T_, phi, T_min_, T_max_);
}
/// \brief Compute the derived curve at orderN.
/// \param order : order of derivative.
/// \return A pointer to \f$\frac{d^Nx(t)}{dt^N}\f$ derivative order N of the curve.
virtual sinusoidal_t* compute_derivate_ptr(const std::size_t order) const{
return new sinusoidal_t(compute_derivate(order));
}
/**
* @brief isApprox check if other and *this are approximately equals given a precision treshold
* Only two curves of the same class can be approximately equals,
* for comparison between different type of curves see isEquivalent.
* @param other the other curve to check
* @param prec the precision treshold, default Eigen::NumTraits<Numeric>::dummy_precision()
* @return true is the two curves are approximately equals
*/
virtual bool isApprox(const sinusoidal_t& other,
const Numeric prec = Eigen::NumTraits<Numeric>::dummy_precision()) const{
return curves::isApprox<time_t>(T_min_, other.min())
&& curves::isApprox<time_t>(T_max_, other.max())
&& dim_ == other.dim()
&& p0_.isApprox(other.p0_, prec)
&& amplitude_.isApprox(other.amplitude_, prec)
&& curves::isApprox<time_t>(T_, other.T_)
&& curves::isApprox<time_t>(phi_, other.phi_);
}
virtual bool isApprox(const curve_abc_t* other,
const Numeric prec = Eigen::NumTraits<Numeric>::dummy_precision()) const {
const sinusoidal_t* other_cast = dynamic_cast<const sinusoidal_t*>(other);
if (other_cast)
return isApprox(*other_cast, prec);
else
return false;
}
virtual bool operator==(const sinusoidal_t& other) const { return isApprox(other); }
virtual bool operator!=(const sinusoidal_t& other) const { return !(*this == other); }
/*Helpers*/
/// \brief Get dimension of curve.
/// \return dimension of curve.
std::size_t virtual dim() const { return dim_; }
/// \brief Get the minimum time for which the curve is defined
/// \return \f$t_{min}\f$ lower bound of time range.
num_t virtual min() const { return T_min_; }
/// \brief Get the maximum time for which the curve is defined.
/// \return \f$t_{max}\f$ upper bound of time range.
num_t virtual max() const { return T_max_; }
/// \brief Get the degree of the curve.
/// \return \f$degree\f$, the degree of the curve.
virtual std::size_t degree() const { return 1; }
/*Helpers*/
/*Attributes*/
Point p0_; // offset
Point amplitude_;
time_t T_; //period
time_t phi_; //phase
time_t T_min_, T_max_; // const
std::size_t dim_; // const
/*Attributes*/
// Serialization of the class
friend class boost::serialization::access;
template <class Archive>
void serialize(Archive& ar, const unsigned int version) {
if (version) {
// Do something depending on version ?
}
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(curve_abc_t);
ar& boost::serialization::make_nvp("p0", p0_);
ar& boost::serialization::make_nvp("amplitude_", amplitude_);
ar& boost::serialization::make_nvp("T_", T_);
ar& boost::serialization::make_nvp("phi_", phi_);
ar& boost::serialization::make_nvp("T_min", T_min_);
ar& boost::serialization::make_nvp("T_max", T_max_);
ar& boost::serialization::make_nvp("dim", dim_);
}
private:
inline const num_t two_pi_f(const time_t& t) const { return (2*M_PI / T_) * t; }
}; // struct sinusoidal
}//namespace curve
#endif // _CLASS_SINUSOIDALCURVE
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment