Commit 48e5946d authored by JasonChmn's avatar JasonChmn
Browse files

Fix few warnings

parent 40a366a1
......@@ -268,8 +268,8 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
/// \brief Compute de Casteljau's reduction of the given list of points at time t.
/// For the list \f$pts\f$ of N points, compute a new list of points of size N-1 :<br>
/// \f$<br>( pts[0]*(1-t)+pts[1], pts[1]*(1-t)+pts[2], ..., pts[0]*(N-2)+pts[N-1] )\f$<br>
/// with t the time when to evaluate bezier curve.<br>\
/// The new list contains centroid of parameters \f${t,1-t}\f$ of consecutive points in the list.
/// with t the time when to evaluate bezier curve.<br>\ The new list contains centroid of
/// parameters \f${t,1-t}\f$ of consecutive points in the list.
/// \param pts : list of points.
/// \param u : NORMALIZED time when to evaluate the curve.
/// \return reduced list of point (size of pts - 1).
......
......@@ -39,7 +39,6 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
typedef std::vector< pair_point_tangent_t ,Eigen::aligned_allocator<Point> > t_pair_point_tangent_t;
typedef std::vector<Time> vector_time_t;
typedef Numeric num_t;
typedef int Index;
/*Attributes*/
public:
......@@ -61,7 +60,7 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
/// Number of control points (pairs).
std::size_t size_;
/// Degree (Cubic so degree 3)
const std::size_t degree_ = 3;
static const std::size_t degree_ = 3;
/*Attributes*/
public:
......@@ -164,12 +163,12 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
/// \brief Get number of control points contained in the trajectory.
/// \return number of control points.
///
Index size() const { return size_; }
std::size_t size() const { return size_; }
/// \brief Get number of intervals (subsplines) contained in the trajectory.
/// \return number of intervals (subsplines).
///
Index numIntervals() const { return size()-1; }
std::size_t numIntervals() const { return size()-1; }
/// \brief Evaluate value of cubic hermite spline or its derivate at specified order at time \f$t\f$.
......@@ -186,7 +185,7 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
///
Point evalCubicHermiteSpline(const Numeric t, std::size_t order_derivative) const
{
const Index id = findInterval(t);
const std::size_t id = findInterval(t);
// ID is on the last control point
if(id == size_-1)
{
......@@ -222,7 +221,7 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
//std::cout << "for val t="<<t<<" alpha="<<alpha<<" coef : h00="<<h00<<" h10="<<h10<<" h01="<<h01<<" h11="<<h11<<std::endl;
Point p_ = (h00 * Pair0.first + h10 * dt * Pair0.second + h01 * Pair1.first + h11 * dt * Pair1.second);
// if derivative, divide by dt^order_derivative
for (int i=0; i<order_derivative; i++)
for (std::size_t i=0; i<order_derivative; i++)
{
p_ /= dt;
}
......@@ -290,7 +289,7 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
/// \param t : time where to look for interval.
/// \return Index of interval for time t.
///
Index findInterval(const Numeric t) const
std::size_t findInterval(const Numeric t) const
{
// time before first control point time.
if(t < time_control_points_[0])
......@@ -303,11 +302,11 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
return size_-1;
}
Index left_id = 0;
Index right_id = size_-1;
std::size_t left_id = 0;
std::size_t right_id = size_-1;
while(left_id <= right_id)
{
const Index middle_id = left_id + (right_id - left_id)/2;
const std::size_t middle_id = left_id + (right_id - left_id)/2;
if(time_control_points_.at(middle_id) < t)
{
left_id = middle_id+1;
......@@ -332,7 +331,7 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
duration_splines_.clear();
Time actual_time;
Time prev_time = *(time_control_points_.begin());
Index i = 0;
std::size_t i = 0;
for (i=0; i<size()-1; i++)
{
actual_time = time_control_points_.at(i+1);
......@@ -346,7 +345,7 @@ struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
///
bool checkDurationSplines() const
{
Index i = 0;
std::size_t i = 0;
bool is_positive = true;
while (is_positive && i<duration_splines_.size())
{
......
......@@ -17,10 +17,9 @@ namespace curves
/// \class PiecewiseCurve.
/// \brief Represent a piecewise polynomial curve. We can add some new polynomials to the curve,
/// but the starting time of the polynomial to add should be equal to the ending time of the
/// piecewise_polynomial_curve.\n
/// Example : A piecewise polynomial curve composed of three polynomials pol_0, pol_1 and pol_2
/// where pol_0 is defined between \f$[T0_{min},T0_{max}]\f$, pol_1 between \f$[T0_{max},T1_{max}]\f$
/// and pol_2 between \f$[T1_{max},T2_{max}]\f$.
/// piecewise_polynomial_curve.<br>\ Example : A piecewise polynomial curve composed of three polynomials pol_0,
/// pol_1 and pol_2 where pol_0 is defined between \f$[T0_{min},T0_{max}]\f$, pol_1 between
/// \f$[T0_{max},T1_{max}]\f$ and pol_2 between \f$[T1_{max},T2_{max}]\f$.
/// On the piecewise polynomial curve, pol_0 is located between \f$[T0_{min},T0_{max}[\f$,
/// pol_1 between \f$[T0_{max},T1_{max}[\f$ and pol_2 between \f$[T1_{max},T2_{max}]\f$.
///
......@@ -35,7 +34,6 @@ struct piecewise_polynomial_curve : public curve_abc<Time, Numeric, Dim, Safe, P
typedef T_Point t_point_t;
typedef Time time_t;
typedef Numeric num_t;
typedef int Index;
//typedef polynomial <double, double, 3, true, point_t, t_point_t> polynomial_t;
typedef polynomial <double, double, 3, true, point_t, t_point_t> polynomial_t;
......@@ -105,8 +103,9 @@ struct piecewise_polynomial_curve : public curve_abc<Time, Numeric, Dim, Safe, P
///
bool is_continuous(const std::size_t order)
{
double margin = 0.001;
bool isContinuous = true;
Index i=0;
std::size_t i=0;
point_t value_end, value_start;
while (isContinuous && i<(size_-1))
{
......@@ -139,7 +138,7 @@ struct piecewise_polynomial_curve : public curve_abc<Time, Numeric, Dim, Safe, P
/// \param t : time where to look for interval.
/// \return Index of interval for time t.
///
Index find_interval(const Numeric t) const
std::size_t find_interval(const Numeric t) const
{
// time before first control point time.
if(t < time_polynomial_curves_[0])
......@@ -152,11 +151,11 @@ struct piecewise_polynomial_curve : public curve_abc<Time, Numeric, Dim, Safe, P
return size_-1;
}
Index left_id = 0;
Index right_id = size_-1;
std::size_t left_id = 0;
std::size_t right_id = size_-1;
while(left_id <= right_id)
{
const Index middle_id = left_id + (right_id - left_id)/2;
const std::size_t middle_id = left_id + (right_id - left_id)/2;
if(time_polynomial_curves_.at(middle_id) < t)
{
left_id = middle_id+1;
......@@ -186,9 +185,8 @@ struct piecewise_polynomial_curve : public curve_abc<Time, Numeric, Dim, Safe, P
/* Variables */
t_polynomial_t polynomial_curves_; // for curves 0/1/2 : [ curve0, curve1, curve2 ]
t_vector_time_t time_polynomial_curves_; // for curves 0/1/2 : [ Tmin0, Tmax0,Tmax1,Tmax2 ]
Numeric size_; // Number of segments in piecewise curve = size of polynomial_curves_
std::size_t size_; // Number of segments in piecewise curve = size of polynomial_curves_
Time T_min_, T_max_;
const double margin = 0.001;
};
} // end namespace
......
......@@ -484,6 +484,7 @@ void toPolynomialConversionTest(bool& error)
double T_max = 3.0;
bezier_curve_t bc(control_points.begin(), control_points.end(),T_min, T_max);
polynomial_t pol = polynomial_from_curve<polynomial_t, bezier_curve_t>(bc);
compareCurves<polynomial_t, bezier_curve_t>(pol, bc, errMsg, error);
}
void cubicConversionTest(bool& error)
......@@ -956,7 +957,7 @@ void BezierEvalDeCasteljau(bool& error)
void BezierSplitCurve(bool& error)
{
// test for degree 5
int n = 5;
size_t n = 5;
double t_min = 0.2;
double t_max = 10;
for(size_t i = 0 ; i < 1 ; ++i)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment