From d044515ad2782d8bb7df7a476990c18e008e5033 Mon Sep 17 00:00:00 2001 From: JasonChmn <jason.chemin@hotmail.fr> Date: Thu, 25 Apr 2019 14:23:56 +0200 Subject: [PATCH] Implementation of cubic hermite spline, start to do unit test --- include/curves/CMakeLists.txt | 1 + include/curves/cubic_hermite_spline.h | 312 ++++++++++++++++++++++++++ include/curves/cubic_spline.h | 3 +- tests/Main.cpp | 96 ++++++-- 4 files changed, 398 insertions(+), 14 deletions(-) create mode 100644 include/curves/cubic_hermite_spline.h diff --git a/include/curves/CMakeLists.txt b/include/curves/CMakeLists.txt index c0f87f9..21b7a3c 100644 --- a/include/curves/CMakeLists.txt +++ b/include/curves/CMakeLists.txt @@ -11,6 +11,7 @@ SET(${PROJECT_NAME}_HEADERS curve_constraint.h quintic_spline.h linear_variable.h + cubic_hermite_spline.h ) INSTALL(FILES diff --git a/include/curves/cubic_hermite_spline.h b/include/curves/cubic_hermite_spline.h new file mode 100644 index 0000000..c953b53 --- /dev/null +++ b/include/curves/cubic_hermite_spline.h @@ -0,0 +1,312 @@ +#ifndef _CLASS_CUBICHERMITESPLINE +#define _CLASS_CUBICHERMITESPLINE + +#include "curve_abc.h" +#include "bernstein.h" +#include "curve_constraint.h" + +#include "MathDefs.h" + +#include <vector> +#include <stdexcept> + +#include <iostream> + +namespace curves +{ +/// \class CubicHermiteSpline. +/// \brief Represents a set of cubic hermite splines defining a continuous function \f$x(t)\f$. +/// A hermite cubic spline is a minimal degree polynom interpolating a function in two +/// points \f$P_i\f$ and \f$P_{i+1}\f$ with its tangent \f$m_i\f$ and \f$m_{i+1}\f$. +/// A hermite cubic spline : +/// - crosses each of the waypoint given in its initialization (\f$P_0\f$, \f$P_1\f$,...,\f$P_N\f$). +/// - has its derivate on \f$P_i\f$ and \f$P_{i+1}\f$ are \f$x'(t_{P_i}) = m_i\f$ and \f$x'(t_{P_{i+1}}) = m_{i+1}\f$. +/// +template<typename Time= double, typename Numeric=Time, std::size_t Dim=3, bool Safe=false +, typename Point= Eigen::Matrix<Numeric, Dim, 1> +, typename Tangent= Eigen::Matrix<Numeric, Dim, 1> +, typename Pair_point_tangent= std::pair<Point, Tangent> +, typename Vector_pair= std::vector< Pair_point_tangent ,Eigen::aligned_allocator<Point> > +> +struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point> +{ + + typedef int Index; + typedef std::vector<Time> Vector_time; + + /*Attributes*/ + public: + Vector_pair control_points_; // Vector of pair < Point, Tangent > , Dim = Size_. + Vector_time time_control_points_; // Time corresponding to each control point, Dim = Size_. + Vector_time duration_splines_; // its length should be duration_splines_[0] = t_PO_P1, duration_splines_[1] = t_P1_P2, Dim = Size_-1. + /*const*/ Time T_; + /*const*/ std::size_t size_; + /*Attributes*/ + + public: + /// \brief Constructor. + /// \param wayPointsBegin : an iterator pointing to the first element of a waypoint container. + /// \param wayPointsEns : an iterator pointing to the last element of a waypoint container. + /// + template<typename In> + cubic_hermite_spline(In PairsBegin, In PairsEnd) + : T_(1.) + , size_(std::distance(PairsBegin, PairsEnd)) + { + // Check size of pairs container. + std::size_t const size(std::distance(PairsBegin, PairsEnd)); + if(Safe && size < 1) + { + throw std::length_error("can't create cubic_hermite_spline, number of pairs is inferior to 2."); + } + // Push all pairs in controlPoints + In it(PairsBegin); + for(; it != PairsEnd; ++it) + { + control_points_.push_back(*it); + } + setTimeSplinesDefault(); + } + + /// \brief Destructor. + virtual ~cubic_hermite_spline(){} + + /*Operations*/ + public: + virtual Point operator()(const Time t) const + { + if(Safe &! (0 <= t && t <= T_)) + { + throw std::out_of_range("can't evaluate bezier curve, out of range"); + } + if (size_ == 1) + { + return control_points_.front().first; + } + else + { + return evalCubicHermiteSpline(t, 0); + } + } + + /// \brief Evaluate the derivative of order N of spline at time t. + /// \param t : time when to evaluate the spline. + /// \param order : order of derivative. + /// \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative spline of order N at time t. + /// + virtual Point derivate(const Time t, const std::size_t order) const + { + return evalCubicHermiteSpline(t, order); + } + + /// \brief Set duration of each spline. + /// Set duration of each spline, exemple : time_control_points[0] = duration of first spline, + /// time_control_points[0] = duration of second spline (...). + /// \param time_control_points : Vector containing duration of each spline. + void setTimeSplines(const Vector_time & time_control_points) const + { + time_control_points_ = time_control_points; + assert(time_control_points.size() == size()); + compute_duration_splines(); + if (!check_duration_splines()) + { + throw std::logic_error("time_splines not monotonous, all spline duration should be superior to 0"); + } + } + + /// \brief Set duration by default of each spline. + /// Set duration by default (duration = T / Number of control points) for each spline. + /// + void setTimeSplinesDefault() + { + time_control_points_.clear(); + Time timestep = T_ / (control_points_.size()-1); + Time time = 0.; + Index i = 0; + for (i=0; i<size(); i++) + { + //time_control_points_.push_back(time); + time_control_points_.push_back(time); + time += timestep; + } + compute_duration_splines(); + } + + /// \brief Returns the index of the interval for the interpolation. + /// + Index findInterval(const Numeric t) const + { + // time before first control point time. + if(t < time_control_points_[0]) + { + return 0; + } + // time is after last control point time + if(t > time_control_points_[size_-1]) + { + return size_-1; + } + + Index left_id = 0; + Index right_id = size_-1; + while(left_id <= right_id) + { + const Index middle_id = left_id + (right_id - left_id)/2; + if(time_control_points_.at(middle_id) < t) + { + left_id = middle_id+1; + } + else if(time_control_points_.at(middle_id) > t) + { + right_id = middle_id-1; + } + else + { + return middle_id; + } + } + return left_id-1; + } + + /* + Vector_pair control_points_; // Vector of pair < Point, Tangent > + Vector_time time_control_points_; // Time corresponding to each control point. + Vector_time duration_splines_; + */ + // See how to evaluate cubic hermite spline + Point evalCubicHermiteSpline(const Numeric t, std::size_t order_derivated) const + { + // TO DO + const Index id = findInterval(t); + + // ID is on the last control point + if(id == size_-1) + { + if (order_derivated==0) + { + return control_points_.back().first; + } + else if (order_derivated==1) + { + return control_points_.back().second; + } + else + { + return control_points_.back().first*0.; // To modify, create a new Tangent ininitialized with 0. + } + } + + const Pair_point_tangent Pair0 = control_points_.at(id); + const Pair_point_tangent Pair1 = control_points_.at(id+1); + + const Time & t0 = time_control_points_[id]; + const Time & t1 = time_control_points_[id+1]; + + const Time dt = (t1-t0); + const Time alpha = (t - t0)/dt; + + assert(0. <= alpha <= 1. && "alpha must be in [0,1]"); + + Numeric h00, h10, h01, h11; + evalCoeffs(alpha,h00,h10,h01,h11,order_derivated); + //std::cout << "for val t="<<t<<" coef : h00="<<h00<<" h01="<<h01<<" h10="<<h10<<" h11="<<h11<<std::endl; + h10 *= dt; h11 *= dt; + + Point p_ = (h00 * Pair0.first + h10 * Pair0.second + h01 * Pair1.first + h11 * Pair1.second); + return p_; + } + + + /// \brief Returns the number of points contained in the trajectory. + /// + Index size() const { return size_; } + + /// \brief Returns the number of intervals (splines) contained in the trajectory. + /// + Index numIntervals() const { return size()-1; } + + + private: + + /// \brief compute duration of each spline, ex : \f$t_{P_0\_P_1}=t_{P_1}-t_{P_0}f$. + void compute_duration_splines() { + duration_splines_.clear(); + Time actual_time; + Time prev_time = *(time_control_points_.begin()); + Index i = 0; + for (i=0; i<size()-1; i++) + { + actual_time = time_control_points_.at(i+1); + duration_splines_.push_back(actual_time-prev_time); + prev_time = actual_time; + } + } + + /// \brief Check if the absicca + bool check_duration_splines() const + { + if (duration_splines_.size()>0) { + return false; + }else{ + return (duration_splines_.array > 0.).all(); + } + } + + static void evalCoeffs(const Numeric t, Numeric & h00, Numeric & h10, Numeric & h01, Numeric & h11, std::size_t order_derivated) + { + Numeric t_square = t*t; + Numeric t_cube = t_square*t; + if (order_derivated==0) + { + h00 = 2*t_cube -3*t_square +1.; + h10 = t_cube -2*t_square +t; + h01 = -2*t_cube +3*t_square; + h11 = t_cube -t_square; + } + else if (order_derivated==1) + { + h00 = 6*t_square -6*t; + h10 = 3*t_square -4*t +1.; + h01 = -6*t_square +6*t; + h11 = 3*t_square -2*t; + } + else if (order_derivated==2) + { + h00 = 12*t -6.; + h10 = 6*t -4.; + h01 = -12*t +6.; + h11 = 6*t -2.; + } + else if (order_derivated==3) + { + h00 = 12.; + h10 = 6.; + h01 = -12.; + h11 = 0.; + } + else + { + h00 = 0.; + h10 = 0.; + h01 = 0.; + h11 = 0.; + } + } + + + /*Operations*/ + + /*Helpers*/ + public: + /// \brief Get the minimum time for which the curve is defined + /// \return \f$t_{min}\f$, lower bound of time range. + Time virtual min() const{return time_control_points_.front();} + /// \brief Get the maximum time for which the curve is defined. + /// \return \f$t_{max}\f$, upper bound of time range. + Time virtual max() const{return time_control_points_.back();} + /*Helpers*/ + +}; + +} // namespace curve +#endif //_CLASS_CUBICHERMITESPLINE \ No newline at end of file diff --git a/include/curves/cubic_spline.h b/include/curves/cubic_spline.h index 4e2efed..96eba75 100644 --- a/include/curves/cubic_spline.h +++ b/include/curves/cubic_spline.h @@ -24,7 +24,8 @@ namespace curves { /// \brief Creates coefficient vector of a cubic spline defined on the interval /// \f$[t_{min}, t_{max}]\f$. It follows the equation : -/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 \f$ where \f$ t \in [t_{min}, t_{max}] \f$. +/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 \f$ where \f$ t \in [t_{min}, t_{max}] \f$ +/// with a, b, c and d the control points. /// template<typename Point, typename T_Point> T_Point make_cubic_vector(Point const& a, Point const& b, Point const& c, Point const &d) diff --git a/tests/Main.cpp b/tests/Main.cpp index 162e202..b1b217e 100644 --- a/tests/Main.cpp +++ b/tests/Main.cpp @@ -6,6 +6,7 @@ #include "curves/helpers/effector_spline.h" #include "curves/helpers/effector_spline_rotation.h" #include "curves/bezier_polynom_conversion.h" +#include "curves/cubic_hermite_spline.h" #include <string> #include <iostream> @@ -16,6 +17,7 @@ using namespace std; namespace curves { typedef Eigen::Vector3d point_t; +typedef Eigen::Vector3d tangent_t; typedef std::vector<point_t,Eigen::aligned_allocator<point_t> > t_point_t; typedef polynom <double, double, 3, true, point_t, t_point_t> polynom_t; typedef exact_cubic <double, double, 3, true, point_t> exact_cubic_t; @@ -32,6 +34,9 @@ typedef exact_cubic <double, double, 1, true, point_one> exact_cubic_one; typedef std::pair<double, point_one> WaypointOne; typedef std::vector<WaypointOne> T_WaypointOne; +typedef cubic_hermite_spline <double, double, 3, true, point_t> cubic_hermite_spline_t; +typedef std::pair<point_t, tangent_t> Pair_point_tangent; + bool QuasiEqual(const double a, const double b, const float margin) { if ((a <= 0 && b <= 0) || (a >= 0 && b>= 0)) @@ -66,7 +71,6 @@ void ComparePoints(const Eigen::VectorXd& pt1, const Eigen::VectorXd& pt2, const } /*Cubic Function tests*/ - void CubicFunctionTest(bool& error) { std::string errMsg("In test CubicFunctionTest ; unexpected result for x "); @@ -140,7 +144,6 @@ void CubicFunctionTest(bool& error) } /*bezier_curve Function tests*/ - void BezierCurveTest(bool& error) { std::string errMsg("In test BezierCurveTest ; unexpected result for x "); @@ -240,7 +243,7 @@ void BezierCurveTest(bool& error) } #include <ctime> -void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/) +void BezierCurveTestCompareHornerAndBernstein(bool&) // error { using namespace std; std::vector<double> values; @@ -506,7 +509,6 @@ void ExactCubicNoErrorTest(bool& error) } } - /*Exact Cubic Function tests*/ void ExactCubicTwoPointsTest(bool& error) { @@ -544,7 +546,7 @@ void ExactCubicOneDimTest(bool& error) ComparePoints(one, res1, errmsg, error); } -void CheckWayPointConstraint(const std::string& errmsg, const double step, const curves::T_Waypoint& /*wayPoints*/, const exact_cubic_t* curve, bool& error ) +void CheckWayPointConstraint(const std::string& errmsg, const double step, const curves::T_Waypoint&, const exact_cubic_t* curve, bool& error ) { point_t res1; for(double i = 0; i <= 1; i = i + step) @@ -794,18 +796,22 @@ void TestReparametrization(bool& error) } } -point_t randomPoint(const double min, const double max ){ +point_t randomPoint(const double min, const double max ) +{ point_t p; for(size_t i = 0 ; i < 3 ; ++i) p[i] = (rand()/(double)RAND_MAX ) * (max-min) + min; return p; } -void BezierEvalDeCasteljau(bool& error){ +void BezierEvalDeCasteljau(bool& error) +{ using namespace std; std::vector<double> values; for (int i =0; i < 100000; ++i) + { values.push_back(rand()/RAND_MAX); + } //first compare regular evaluation (low dim pol) point_t a(1,2,3); @@ -828,7 +834,8 @@ void BezierEvalDeCasteljau(bool& error){ for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit) { - if(cf.evalDeCasteljau(*cit) != cf(*cit)){ + if(cf.evalDeCasteljau(*cit) != cf(*cit)) + { error = true; std::cout<<" De Casteljau evaluation did not return the same value as analytical"<<std::endl; } @@ -845,7 +852,8 @@ void BezierEvalDeCasteljau(bool& error){ for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit) { - if(cf.evalDeCasteljau(*cit) != cf(*cit)){ + if(cf.evalDeCasteljau(*cit) != cf(*cit)) + { error = true; std::cout<<" De Casteljau evaluation did not return the same value as analytical"<<std::endl; } @@ -853,22 +861,24 @@ void BezierEvalDeCasteljau(bool& error){ } - /** * @brief BezierSplitCurve test the 'split' method of bezier curve * @param error */ -void BezierSplitCurve(bool& error){ +void BezierSplitCurve(bool& error) +{ // test for degree 5 int n = 5; double t_min = 0.2; double t_max = 10; - for(size_t i = 0 ; i < 1 ; ++i){ + for(size_t i = 0 ; i < 1 ; ++i) + { // build a random curve and split it at random time : //std::cout<<"build a random curve"<<std::endl; point_t a; std::vector<point_t> wps; - for(size_t j = 0 ; j <= n ; ++j){ + for(size_t j = 0 ; j <= n ; ++j) + { wps.push_back(randomPoint(-10.,10.)); } double t = (rand()/(double)RAND_MAX )*(t_max-t_min) + t_min; @@ -930,11 +940,69 @@ void BezierSplitCurve(bool& error){ } +/* cubic hermite spline function test */ +void CubicHermiteTwoPairsPositionVelocityTest(bool& error) +{ + std::string errmsg1("in Cubic Hermite 2 points, Error While checking that given wayPoints are crossed (expected / obtained) : "); + std::string errmsg2("in Cubic Hermite 2 points, Error While checking value of point on curve : "); + std::vector< Pair_point_tangent > control_points; + point_t res1; + + // 1 Dimension + control_points.clear(); + // first point : p0(0.,0.,0.) m0(0.,1.,0.) + control_points.push_back(Pair_point_tangent(point_t(0.,0.,0.),tangent_t(0.5,0.,0.))); + // second point : p1(1.,0.,0.) m1(1.,1.,1.) + control_points.push_back(Pair_point_tangent(point_t(1.,0.,0.),tangent_t(0.1,0.,0.))); + // Create cubic hermite spline + cubic_hermite_spline_t cubic_hermite_spline1D(control_points.begin(), control_points.end()); + //Check + res1 = cubic_hermite_spline1D(0); // t=0 + ComparePoints(point_t(0.,0.,0.), res1, errmsg1, error); + res1 = cubic_hermite_spline1D(1); // t=1 + ComparePoints(point_t(1.,0.,0.), res1, errmsg1, error); + res1 = cubic_hermite_spline1D(0.5); // t=0.5 + ComparePoints(point_t(0.55,0.,0.0), res1, errmsg2, error); + + // 2 Dimension + control_points.clear(); + // first point : p0(0.,0.,0.) m0(0.,1.,0.) + control_points.push_back(Pair_point_tangent(point_t(0.,0.,0.),tangent_t(0.5,0.5,0.))); + // second point : p1(1.,0.,0.) m1(1.,1.,1.) + control_points.push_back(Pair_point_tangent(point_t(1.,1.,0.),tangent_t(0.5,0.1,0.))); + // Create cubic hermite spline + cubic_hermite_spline_t cubic_hermite_spline2D(control_points.begin(), control_points.end()); + //Check + res1 = cubic_hermite_spline2D(0); // t=0 + ComparePoints(point_t(0.,0.,0.), res1, errmsg1, error); + res1 = cubic_hermite_spline2D(1); // t=1 + ComparePoints(point_t(1.,1.,0.), res1, errmsg1, error); + res1 = cubic_hermite_spline2D(0.5); // t=0.5 + ComparePoints(point_t(0.5,0.55,0.0), res1, errmsg2, error); + + // 2 Dimension + control_points.clear(); + // first point : p0(0.,0.,0.) m0(0.,1.,0.) + control_points.push_back(Pair_point_tangent(point_t(0.,0.,0.),tangent_t(0.5,0.5,0.5))); + // second point : p1(1.,0.,0.) m1(1.,1.,1.) + control_points.push_back(Pair_point_tangent(point_t(1.,1.,1.),tangent_t(0.1,0.1,-0.5))); + // Create cubic hermite spline + cubic_hermite_spline_t cubic_hermite_spline3D(control_points.begin(), control_points.end()); + //Check + res1 = cubic_hermite_spline3D(0); // t=0 + ComparePoints(point_t(0.,0.,0.), res1, errmsg1, error); + res1 = cubic_hermite_spline3D(1); // t=1 + ComparePoints(point_t(1.,1.,1.), res1, errmsg1, error); + res1 = cubic_hermite_spline3D(0.5); // t=0.5 + ComparePoints(point_t(0.55,0.55,0.625), res1, errmsg2, error); +} + int main(int /*argc*/, char** /*argv[]*/) { std::cout << "performing tests... \n"; bool error = false; + /* CubicFunctionTest(error); ExactCubicNoErrorTest(error); ExactCubicPointsCrossedTest(error); // checks that given wayPoints are crossed @@ -954,6 +1022,8 @@ int main(int /*argc*/, char** /*argv[]*/) BezierToPolynomConversionTest(error); BezierEvalDeCasteljau(error); BezierSplitCurve(error); + */ + CubicHermiteTwoPairsPositionVelocityTest(error); if(error) { std::cout << "There were some errors\n"; -- GitLab