From d044515ad2782d8bb7df7a476990c18e008e5033 Mon Sep 17 00:00:00 2001
From: JasonChmn <jason.chemin@hotmail.fr>
Date: Thu, 25 Apr 2019 14:23:56 +0200
Subject: [PATCH] Implementation of cubic hermite spline, start to do unit test

---
 include/curves/CMakeLists.txt         |   1 +
 include/curves/cubic_hermite_spline.h | 312 ++++++++++++++++++++++++++
 include/curves/cubic_spline.h         |   3 +-
 tests/Main.cpp                        |  96 ++++++--
 4 files changed, 398 insertions(+), 14 deletions(-)
 create mode 100644 include/curves/cubic_hermite_spline.h

diff --git a/include/curves/CMakeLists.txt b/include/curves/CMakeLists.txt
index c0f87f9..21b7a3c 100644
--- a/include/curves/CMakeLists.txt
+++ b/include/curves/CMakeLists.txt
@@ -11,6 +11,7 @@ SET(${PROJECT_NAME}_HEADERS
   curve_constraint.h
   quintic_spline.h
   linear_variable.h
+  cubic_hermite_spline.h
   )
 
 INSTALL(FILES
diff --git a/include/curves/cubic_hermite_spline.h b/include/curves/cubic_hermite_spline.h
new file mode 100644
index 0000000..c953b53
--- /dev/null
+++ b/include/curves/cubic_hermite_spline.h
@@ -0,0 +1,312 @@
+#ifndef _CLASS_CUBICHERMITESPLINE
+#define _CLASS_CUBICHERMITESPLINE
+
+#include "curve_abc.h"
+#include "bernstein.h"
+#include "curve_constraint.h"
+
+#include "MathDefs.h"
+
+#include <vector>
+#include <stdexcept>
+
+#include <iostream>
+
+namespace curves
+{
+/// \class CubicHermiteSpline.
+/// \brief Represents a set of cubic hermite splines defining a continuous function \f$x(t)\f$.
+/// A hermite cubic spline is a minimal degree polynom interpolating a function in two 
+/// points \f$P_i\f$ and \f$P_{i+1}\f$ with its tangent \f$m_i\f$ and \f$m_{i+1}\f$.
+/// A hermite cubic spline :
+/// - crosses each of the waypoint given in its initialization (\f$P_0\f$, \f$P_1\f$,...,\f$P_N\f$).
+/// - has its derivate on \f$P_i\f$ and \f$P_{i+1}\f$ are \f$x'(t_{P_i}) = m_i\f$ and \f$x'(t_{P_{i+1}}) = m_{i+1}\f$.
+///
+template<typename Time= double, typename Numeric=Time, std::size_t Dim=3, bool Safe=false
+, typename Point= Eigen::Matrix<Numeric, Dim, 1>
+, typename Tangent= Eigen::Matrix<Numeric, Dim, 1>
+, typename Pair_point_tangent= std::pair<Point, Tangent>
+, typename Vector_pair= std::vector< Pair_point_tangent ,Eigen::aligned_allocator<Point> > 
+>
+struct cubic_hermite_spline : public curve_abc<Time, Numeric, Dim, Safe, Point>
+{
+
+    typedef int Index;
+    typedef std::vector<Time> Vector_time;
+
+    /*Attributes*/
+    public:
+    Vector_pair control_points_; // Vector of pair < Point, Tangent > , Dim = Size_.
+    Vector_time time_control_points_; // Time corresponding to each control point, Dim = Size_.
+    Vector_time duration_splines_; // its length should be duration_splines_[0] = t_PO_P1, duration_splines_[1] = t_P1_P2, Dim = Size_-1.
+    /*const*/ Time T_;
+    /*const*/ std::size_t size_;
+    /*Attributes*/
+    
+    public:
+	/// \brief Constructor.
+	/// \param wayPointsBegin : an iterator pointing to the first element of a waypoint container.
+	/// \param wayPointsEns   : an iterator pointing to the last element of a waypoint container.
+    ///
+	template<typename In>
+	cubic_hermite_spline(In PairsBegin, In PairsEnd)
+	: T_(1.)
+    , size_(std::distance(PairsBegin, PairsEnd))
+	{
+		// Check size of pairs container.
+        std::size_t const size(std::distance(PairsBegin, PairsEnd));
+        if(Safe && size < 1)
+        {
+            throw std::length_error("can't create cubic_hermite_spline, number of pairs is inferior to 2.");
+        }
+        // Push all pairs in controlPoints
+        In it(PairsBegin);
+        for(; it != PairsEnd; ++it)
+        {
+            control_points_.push_back(*it);
+        }
+        setTimeSplinesDefault();
+	}
+
+	/// \brief Destructor.
+    virtual ~cubic_hermite_spline(){}
+
+    /*Operations*/
+	public:
+	virtual Point operator()(const Time t) const
+    {
+        if(Safe &! (0 <= t && t <= T_))
+        {
+			throw std::out_of_range("can't evaluate bezier curve, out of range");
+        }
+        if (size_ == 1)
+        {
+			return control_points_.front().first;
+        }
+        else
+        {
+			return evalCubicHermiteSpline(t, 0);
+        }
+    }
+
+    ///  \brief Evaluate the derivative of order N of spline at time t.
+    ///  \param t : time when to evaluate the spline.
+    ///  \param order : order of derivative.
+    ///  \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative spline of order N at time t.
+    ///
+    virtual Point derivate(const Time t, const std::size_t order) const
+    {   
+        return evalCubicHermiteSpline(t, order);
+    }
+
+    /// \brief Set duration of each spline.
+    /// Set duration of each spline, exemple : time_control_points[0] = duration of first spline, 
+    /// time_control_points[0] = duration of second spline (...).
+    /// \param time_control_points : Vector containing duration of each spline.
+    void setTimeSplines(const Vector_time & time_control_points) const
+	{
+        time_control_points_ = time_control_points;
+		assert(time_control_points.size() == size());
+        compute_duration_splines();
+        if (!check_duration_splines())
+        {
+            throw std::logic_error("time_splines not monotonous, all spline duration should be superior to 0");
+        }
+	}
+
+    /// \brief Set duration by default of each spline.
+    /// Set duration by default (duration = T / Number of control points) for each spline.
+    ///
+    void setTimeSplinesDefault()
+    {
+        time_control_points_.clear();
+        Time timestep = T_ / (control_points_.size()-1);
+        Time time = 0.;
+        Index i = 0;
+        for (i=0; i<size(); i++)
+        {
+            //time_control_points_.push_back(time);
+            time_control_points_.push_back(time);
+            time += timestep;
+        }
+        compute_duration_splines();
+    }
+
+    /// \brief Returns the index of the interval for the interpolation.
+    ///
+    Index findInterval(const Numeric t) const
+    {
+        // time before first control point time.
+        if(t < time_control_points_[0])
+        {
+            return 0;
+        }
+        // time is after last control point time
+        if(t > time_control_points_[size_-1])
+        {
+            return size_-1;
+        }
+
+        Index left_id = 0;
+        Index right_id = size_-1;
+        while(left_id <= right_id)
+        {
+            const Index middle_id = left_id + (right_id - left_id)/2;
+            if(time_control_points_.at(middle_id) < t)
+            {
+                left_id = middle_id+1;
+            }
+            else if(time_control_points_.at(middle_id) > t)
+            {
+                right_id = middle_id-1;
+            }
+            else
+            {
+                return middle_id;
+            }
+        }
+        return left_id-1;
+    }
+
+    /*
+        Vector_pair control_points_; // Vector of pair < Point, Tangent >
+        Vector_time time_control_points_; // Time corresponding to each control point.
+        Vector_time duration_splines_;
+    */
+    // See how to evaluate cubic hermite spline
+    Point evalCubicHermiteSpline(const Numeric t, std::size_t order_derivated) const
+    {
+        // TO DO
+        const Index id = findInterval(t);
+
+        // ID is on the last control point
+        if(id == size_-1)
+        {
+            if (order_derivated==0)
+            {
+                return control_points_.back().first;
+            }
+            else if (order_derivated==1)
+            {
+                return control_points_.back().second;
+            }
+            else
+            {
+                return control_points_.back().first*0.; // To modify, create a new Tangent ininitialized with 0.
+            }
+        }
+
+        const Pair_point_tangent Pair0 = control_points_.at(id);
+        const Pair_point_tangent Pair1 = control_points_.at(id+1);
+
+        const Time & t0 = time_control_points_[id];
+        const Time & t1 = time_control_points_[id+1]; 
+
+        const Time dt = (t1-t0);
+        const Time alpha = (t - t0)/dt;
+
+        assert(0. <= alpha <= 1. && "alpha must be in [0,1]");
+
+        Numeric h00, h10, h01, h11;
+        evalCoeffs(alpha,h00,h10,h01,h11,order_derivated);
+        //std::cout << "for val t="<<t<<" coef : h00="<<h00<<" h01="<<h01<<" h10="<<h10<<" h11="<<h11<<std::endl;
+        h10 *= dt; h11 *= dt;
+
+        Point p_ = (h00 * Pair0.first + h10 * Pair0.second + h01 * Pair1.first + h11 * Pair1.second);
+        return p_;
+    }
+
+    
+    /// \brief Returns the number of points contained in the trajectory.
+    ///
+    Index size() const { return size_; }
+
+    /// \brief Returns the number of intervals (splines) contained in the trajectory.
+    ///
+    Index numIntervals() const { return size()-1; }
+
+
+	private:
+
+    /// \brief compute duration of each spline, ex : \f$t_{P_0\_P_1}=t_{P_1}-t_{P_0}f$.
+    void compute_duration_splines() {
+        duration_splines_.clear();
+        Time actual_time;
+        Time prev_time = *(time_control_points_.begin());
+        Index i = 0;
+        for (i=0; i<size()-1; i++)
+        {
+            actual_time = time_control_points_.at(i+1);
+            duration_splines_.push_back(actual_time-prev_time);
+            prev_time = actual_time;
+        }
+    }
+
+    /// \brief Check if the absicca
+    bool check_duration_splines() const
+    {
+        if (duration_splines_.size()>0) {
+            return false;
+        }else{
+            return (duration_splines_.array > 0.).all();
+        }
+    }
+
+    static void evalCoeffs(const Numeric t, Numeric & h00, Numeric & h10, Numeric & h01, Numeric & h11, std::size_t order_derivated)
+    {
+        Numeric t_square = t*t;
+        Numeric t_cube = t_square*t;
+        if (order_derivated==0)
+        {
+            h00 =  2*t_cube     -3*t_square     +1.;
+            h10 =  t_cube       -2*t_square     +t;
+            h01 = -2*t_cube     +3*t_square;
+            h11 =  t_cube       -t_square;
+        }
+        else if (order_derivated==1)
+        {
+            h00 =  6*t_square   -6*t;
+            h10 =  3*t_square   -4*t    +1.;
+            h01 = -6*t_square   +6*t;
+            h11 =  3*t_square   -2*t;
+        }
+        else if (order_derivated==2)
+        {
+            h00 =  12*t     -6.;
+            h10 =  6*t      -4.;  
+            h01 = -12*t     +6.;
+            h11 =  6*t      -2.;
+        }
+        else if (order_derivated==3)
+        {
+            h00 =  12.;
+            h10 =  6.;  
+            h01 = -12.;
+            h11 =  0.;
+        }
+        else 
+        {
+            h00 =  0.;
+            h10 =  0.;  
+            h01 =  0.;
+            h11 =  0.;
+        }
+    }
+
+
+	/*Operations*/	
+
+    /*Helpers*/
+	public:
+    /// \brief Get the minimum time for which the curve is defined
+    /// \return \f$t_{min}\f$, lower bound of time range.
+    Time virtual min() const{return time_control_points_.front();}
+    /// \brief Get the maximum time for which the curve is defined.
+    /// \return \f$t_{max}\f$, upper bound of time range.
+    Time virtual max() const{return time_control_points_.back();}
+	/*Helpers*/
+
+};
+
+} // namespace curve
+#endif //_CLASS_CUBICHERMITESPLINE
\ No newline at end of file
diff --git a/include/curves/cubic_spline.h b/include/curves/cubic_spline.h
index 4e2efed..96eba75 100644
--- a/include/curves/cubic_spline.h
+++ b/include/curves/cubic_spline.h
@@ -24,7 +24,8 @@ namespace curves
 {
 /// \brief Creates coefficient vector of a cubic spline defined on the interval
 /// \f$[t_{min}, t_{max}]\f$. It follows the equation : 
-/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 \f$ where \f$ t \in [t_{min}, t_{max}] \f$.
+/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 \f$ where \f$ t \in [t_{min}, t_{max}] \f$
+/// with a, b, c and d the control points.
 ///
 template<typename Point, typename T_Point>
 T_Point make_cubic_vector(Point const& a, Point const& b, Point const& c, Point const &d)
diff --git a/tests/Main.cpp b/tests/Main.cpp
index 162e202..b1b217e 100644
--- a/tests/Main.cpp
+++ b/tests/Main.cpp
@@ -6,6 +6,7 @@
 #include "curves/helpers/effector_spline.h"
 #include "curves/helpers/effector_spline_rotation.h"
 #include "curves/bezier_polynom_conversion.h"
+#include "curves/cubic_hermite_spline.h"
 
 #include <string>
 #include <iostream>
@@ -16,6 +17,7 @@ using namespace std;
 namespace curves
 {
 typedef Eigen::Vector3d point_t;
+typedef Eigen::Vector3d tangent_t;
 typedef std::vector<point_t,Eigen::aligned_allocator<point_t> >  t_point_t;
 typedef polynom  <double, double, 3, true, point_t, t_point_t> polynom_t;
 typedef exact_cubic <double, double, 3, true, point_t> exact_cubic_t;
@@ -32,6 +34,9 @@ typedef exact_cubic   <double, double, 1, true, point_one> exact_cubic_one;
 typedef std::pair<double, point_one> WaypointOne;
 typedef std::vector<WaypointOne> T_WaypointOne;
 
+typedef cubic_hermite_spline <double, double, 3, true, point_t> cubic_hermite_spline_t;
+typedef std::pair<point_t, tangent_t> Pair_point_tangent;
+
 bool QuasiEqual(const double a, const double b, const float margin)
 {
 	if ((a <= 0 && b <= 0) || (a >= 0 && b>= 0))
@@ -66,7 +71,6 @@ void ComparePoints(const Eigen::VectorXd& pt1, const Eigen::VectorXd& pt2, const
 }
 
 /*Cubic Function tests*/
-
 void CubicFunctionTest(bool& error)
 {
     std::string errMsg("In test CubicFunctionTest ; unexpected result for x ");
@@ -140,7 +144,6 @@ void CubicFunctionTest(bool& error)
 }
 
 /*bezier_curve Function tests*/
-
 void BezierCurveTest(bool& error)
 {
 	std::string errMsg("In test BezierCurveTest ; unexpected result for x ");
@@ -240,7 +243,7 @@ void BezierCurveTest(bool& error)
 }
 
 #include <ctime>
-void BezierCurveTestCompareHornerAndBernstein(bool& /*error*/)
+void BezierCurveTestCompareHornerAndBernstein(bool&) // error
 {
     using namespace std;
     std::vector<double> values;
@@ -506,7 +509,6 @@ void ExactCubicNoErrorTest(bool& error)
 	}
 }
 
-
 /*Exact Cubic Function tests*/
 void ExactCubicTwoPointsTest(bool& error)
 {
@@ -544,7 +546,7 @@ void ExactCubicOneDimTest(bool& error)
 	ComparePoints(one, res1, errmsg, error);
 }
 
-void CheckWayPointConstraint(const std::string& errmsg, const double step, const curves::T_Waypoint& /*wayPoints*/, const exact_cubic_t* curve, bool& error )
+void CheckWayPointConstraint(const std::string& errmsg, const double step, const curves::T_Waypoint&, const exact_cubic_t* curve, bool& error )
 {
     point_t res1;
     for(double i = 0; i <= 1; i = i + step)
@@ -794,18 +796,22 @@ void TestReparametrization(bool& error)
     }
 }
 
-point_t randomPoint(const double min, const double max ){
+point_t randomPoint(const double min, const double max )
+{
     point_t p;
     for(size_t i = 0 ; i < 3 ; ++i)
         p[i] =  (rand()/(double)RAND_MAX ) * (max-min) + min;
     return p;
 }
 
-void BezierEvalDeCasteljau(bool& error){
+void BezierEvalDeCasteljau(bool& error)
+{
     using namespace std;
     std::vector<double> values;
     for (int i =0; i < 100000; ++i)
+    {
         values.push_back(rand()/RAND_MAX);
+    }
 
     //first compare regular evaluation (low dim pol)
     point_t a(1,2,3);
@@ -828,7 +834,8 @@ void BezierEvalDeCasteljau(bool& error){
 
     for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit)
     {
-        if(cf.evalDeCasteljau(*cit) != cf(*cit)){
+        if(cf.evalDeCasteljau(*cit) != cf(*cit))
+        {
             error = true;
             std::cout<<" De Casteljau evaluation did not return the same value as analytical"<<std::endl;
         }
@@ -845,7 +852,8 @@ void BezierEvalDeCasteljau(bool& error){
 
     for(std::vector<double>::const_iterator cit = values.begin(); cit != values.end(); ++cit)
     {
-        if(cf.evalDeCasteljau(*cit) != cf(*cit)){
+        if(cf.evalDeCasteljau(*cit) != cf(*cit))
+        {
             error = true;
             std::cout<<" De Casteljau evaluation did not return the same value as analytical"<<std::endl;
         }
@@ -853,22 +861,24 @@ void BezierEvalDeCasteljau(bool& error){
 
 }
 
-
 /**
  * @brief BezierSplitCurve test the 'split' method of bezier curve
  * @param error
  */
-void BezierSplitCurve(bool& error){
+void BezierSplitCurve(bool& error)
+{
     // test for degree 5
     int n = 5;
     double t_min = 0.2;
     double t_max = 10;
-    for(size_t i = 0 ; i < 1 ; ++i){
+    for(size_t i = 0 ; i < 1 ; ++i)
+    {
         // build a random curve and split it at random time :
         //std::cout<<"build a random curve"<<std::endl;
         point_t a;
         std::vector<point_t> wps;
-        for(size_t j = 0 ; j <= n ; ++j){
+        for(size_t j = 0 ; j <= n ; ++j)
+        {
             wps.push_back(randomPoint(-10.,10.));
         }
         double t = (rand()/(double)RAND_MAX )*(t_max-t_min) + t_min;
@@ -930,11 +940,69 @@ void BezierSplitCurve(bool& error){
 }
 
 
+/* cubic hermite spline function test */
+void CubicHermiteTwoPairsPositionVelocityTest(bool& error)
+{
+    std::string errmsg1("in Cubic Hermite 2 points, Error While checking that given wayPoints are crossed (expected / obtained) : ");
+    std::string errmsg2("in Cubic Hermite 2 points, Error While checking value of point on curve : ");
+    std::vector< Pair_point_tangent > control_points;
+    point_t res1;
+
+    // 1 Dimension
+    control_points.clear();
+    // first point :  p0(0.,0.,0.) m0(0.,1.,0.)
+    control_points.push_back(Pair_point_tangent(point_t(0.,0.,0.),tangent_t(0.5,0.,0.)));
+    // second point : p1(1.,0.,0.) m1(1.,1.,1.)
+    control_points.push_back(Pair_point_tangent(point_t(1.,0.,0.),tangent_t(0.1,0.,0.)));
+    // Create cubic hermite spline
+    cubic_hermite_spline_t cubic_hermite_spline1D(control_points.begin(), control_points.end());
+    //Check
+    res1 = cubic_hermite_spline1D(0); // t=0
+    ComparePoints(point_t(0.,0.,0.), res1, errmsg1, error);
+    res1 = cubic_hermite_spline1D(1); // t=1
+    ComparePoints(point_t(1.,0.,0.), res1, errmsg1, error);
+    res1 = cubic_hermite_spline1D(0.5); // t=0.5
+    ComparePoints(point_t(0.55,0.,0.0), res1, errmsg2, error);
+
+    // 2 Dimension
+    control_points.clear();
+    // first point :  p0(0.,0.,0.) m0(0.,1.,0.)
+    control_points.push_back(Pair_point_tangent(point_t(0.,0.,0.),tangent_t(0.5,0.5,0.)));
+    // second point : p1(1.,0.,0.) m1(1.,1.,1.)
+    control_points.push_back(Pair_point_tangent(point_t(1.,1.,0.),tangent_t(0.5,0.1,0.)));
+    // Create cubic hermite spline
+    cubic_hermite_spline_t cubic_hermite_spline2D(control_points.begin(), control_points.end());
+    //Check
+    res1 = cubic_hermite_spline2D(0); // t=0
+    ComparePoints(point_t(0.,0.,0.), res1, errmsg1, error);
+    res1 = cubic_hermite_spline2D(1); // t=1
+    ComparePoints(point_t(1.,1.,0.), res1, errmsg1, error);
+    res1 = cubic_hermite_spline2D(0.5); // t=0.5
+    ComparePoints(point_t(0.5,0.55,0.0), res1, errmsg2, error);
+
+    // 2 Dimension
+    control_points.clear();
+    // first point :  p0(0.,0.,0.) m0(0.,1.,0.)
+    control_points.push_back(Pair_point_tangent(point_t(0.,0.,0.),tangent_t(0.5,0.5,0.5)));
+    // second point : p1(1.,0.,0.) m1(1.,1.,1.)
+    control_points.push_back(Pair_point_tangent(point_t(1.,1.,1.),tangent_t(0.1,0.1,-0.5)));
+    // Create cubic hermite spline
+    cubic_hermite_spline_t cubic_hermite_spline3D(control_points.begin(), control_points.end());
+    //Check
+    res1 = cubic_hermite_spline3D(0); // t=0
+    ComparePoints(point_t(0.,0.,0.), res1, errmsg1, error);
+    res1 = cubic_hermite_spline3D(1); // t=1
+    ComparePoints(point_t(1.,1.,1.), res1, errmsg1, error);
+    res1 = cubic_hermite_spline3D(0.5); // t=0.5
+    ComparePoints(point_t(0.55,0.55,0.625), res1, errmsg2, error);
+}
+
 
 int main(int /*argc*/, char** /*argv[]*/)
 {
     std::cout << "performing tests... \n";
     bool error = false;
+    /*
     CubicFunctionTest(error);
     ExactCubicNoErrorTest(error);
     ExactCubicPointsCrossedTest(error); // checks that given wayPoints are crossed
@@ -954,6 +1022,8 @@ int main(int /*argc*/, char** /*argv[]*/)
     BezierToPolynomConversionTest(error);
     BezierEvalDeCasteljau(error);
     BezierSplitCurve(error);
+    */
+    CubicHermiteTwoPairsPositionVelocityTest(error);
     if(error)
 	{
         std::cout << "There were some errors\n";
-- 
GitLab