from numpy import matrix from numpy.linalg import norm from curves import bezier3, bezier6, curve_constraints, exact_cubic, from_bezier, polynom, spline_deriv_constraint __EPS = 1e-6 waypoints = matrix([[1., 2., 3.], [4., 5., 6.]]).transpose() waypoints6 = matrix([[1., 2., 3., 7., 5., 5.], [4., 5., 6., 4., 5., 6.]]).transpose() time_waypoints = matrix([0., 1.]).transpose() # TESTING BEZIER CURVE # - Functions : constructor, min, max, derivate,compute_derivate, compute_primitive # - Variables : degree, nbWayPoints # Create bezier6 and bezier3 a = bezier6(waypoints6) a = bezier3(waypoints, 3.) # Test : Degree, min, max, derivate assert (a.degree == a.nbWaypoints - 1) a.min() a.max() a(0.4) assert ((a.derivate(0.4, 0) == a(0.4)).all()) a.derivate(0.4, 2) a = a.compute_derivate(100) prim = a.compute_primitive(1) # Check primitive and derivate - order 1 for i in range(10): t = float(i) / 10. assert (a(t) == prim.derivate(t, 1)).all() assert (prim(0) == matrix([0., 0., 0.])).all() # Check primitive and derivate - order 2 prim = a.compute_primitive(2) for i in range(10): t = float(i) / 10. assert (a(t) == prim.derivate(t, 2)).all() assert (prim(0) == matrix([0., 0., 0.])).all() # Create new bezier3 curve waypoints = matrix([[1., 2., 3.], [4., 5., 6.], [4., 5., 6.], [4., 5., 6.], [4., 5., 6.]]).transpose() a0 = bezier3(waypoints) a1 = bezier3(waypoints, 3.) prim0 = a0.compute_primitive(1) prim1 = a1.compute_primitive(1) # Check change in argument time_t of bezier3 for i in range(10): t = float(i) / 10. assert norm(a0(t) - a1(3 * t)) < __EPS assert norm(a0.derivate(t, 1) - a1.derivate(3 * t, 1) * 3.) < __EPS assert norm(a0.derivate(t, 2) - a1.derivate(3 * t, 2) * 9.) < __EPS assert norm(prim0(t) - prim1(t * 3) / 3.) < __EPS assert (prim(0) == matrix([0., 0., 0.])).all() # testing bezier with constraints c = curve_constraints() c.init_vel = matrix([0., 1., 1.]).transpose() c.end_vel = matrix([0., 1., 1.]).transpose() c.init_acc = matrix([0., 1., -1.]).transpose() c.end_acc = matrix([0., 100., 1.]).transpose() #Check derivate with constraints waypoints = matrix([[1., 2., 3.], [4., 5., 6.]]).transpose() a = bezier3(waypoints, c) assert norm(a.derivate(0, 1) - c.init_vel) < 1e-10 assert norm(a.derivate(1, 2) - c.end_acc) < 1e-10 # TESTING POLYNOM FUNCTION # - Functions : constructor, min, max, derivate a = polynom(waypoints) a = polynom(waypoints, -1., 3.) a.min() a.max() a(0.4) assert ((a.derivate(0.4, 0) == a(0.4)).all()) a.derivate(0.4, 2) # TESTING EXACT_CUBIC FUNCTION # - Functions : constructor, min, max, derivate a = exact_cubic(waypoints, time_waypoints) a.min() a.max() a(0.4) assert ((a.derivate(0.4, 0) == a(0.4)).all()) a.derivate(0.4, 2) # TESTING SPLINE_DERIV_CONSTRAINTS # - Functions : constructor, min, max, derivate c = curve_constraints() c.init_vel c.end_vel c.init_acc c.end_acc c.init_vel = matrix([0., 1., 1.]).transpose() c.end_vel = matrix([0., 1., 1.]).transpose() c.init_acc = matrix([0., 1., 1.]).transpose() c.end_acc = matrix([0., 1., 1.]).transpose() a = spline_deriv_constraint(waypoints, time_waypoints) a = spline_deriv_constraint(waypoints, time_waypoints, c) # CONVERTING BEZIER TO POLYNOM a = bezier3(waypoints) a_pol = from_bezier(a) assert norm(a(0.3) - a_pol(0.3)) < __EPS