Commit ea8ac10c authored by JasonChmn's avatar JasonChmn Committed by Pierre Fernbach
Browse files

[Indentation] Reindentation of all the code - 2

parent 13089d03
......@@ -31,8 +31,8 @@ namespace curves
/// For degree lesser than 4, the evaluation is analitycal. Otherwise
/// the bernstein polynoms are used to evaluate the spline at a given location.
///
template<typename Time= double, typename Numeric=Time, std::size_t Dim=3, bool Safe=false
, typename Point= Eigen::Matrix<Numeric, Eigen::Dynamic, 1> >
template<typename Time= double, typename Numeric=Time, std::size_t Dim=3, bool Safe=false,
typename Point= Eigen::Matrix<Numeric, Eigen::Dynamic, 1> >
struct bezier_curve : public curve_abc<Time, Numeric, Safe, Point>,
public serialization::Serializable< bezier_curve<Time, Numeric, Dim, Safe, Point> >
{
......
......@@ -35,8 +35,7 @@ namespace curves
///
template<typename Time= double, typename Numeric=Time, std::size_t Dim=3, bool Safe=false,
typename Point= Eigen::Matrix<Numeric, Eigen::Dynamic, 1>,
typename Tangent= Eigen::Matrix<Numeric, Eigen::Dynamic, 1>
>
typename Tangent= Eigen::Matrix<Numeric, Eigen::Dynamic, 1> >
struct cubic_hermite_spline : public curve_abc<Time, Numeric, Safe, Point>,
public serialization::Serializable< cubic_hermite_spline<Time, Numeric, Dim, Safe, Point, Tangent> >
{
......
......@@ -22,27 +22,27 @@
namespace curves
{
/// \brief Creates coefficient vector of a cubic spline defined on the interval
/// \f$[t_{min}, t_{max}]\f$. It follows the equation : <br>
/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 \f$ where \f$ t \in [t_{min}, t_{max}] \f$
/// with a, b, c and d the control points.
///
template<typename Point, typename T_Point>
T_Point make_cubic_vector(Point const& a, Point const& b, Point const& c, Point const &d)
{
T_Point res;
res.push_back(a);res.push_back(b);res.push_back(c);res.push_back(d);
return res;
}
template<typename Time, typename Numeric, std::size_t Dim, bool Safe,
typename Point, typename T_Point>
polynomial<Time,Numeric,Dim,Safe,Point,T_Point> create_cubic(Point const& a, Point const& b, Point const& c, Point const &d,
const Time t_min, const Time t_max)
{
T_Point coeffs = make_cubic_vector<Point, T_Point>(a,b,c,d);
return polynomial<Time,Numeric,Dim,Safe,Point,T_Point>(coeffs.begin(),coeffs.end(), t_min, t_max);
}
/// \brief Creates coefficient vector of a cubic spline defined on the interval
/// \f$[t_{min}, t_{max}]\f$. It follows the equation : <br>
/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 \f$ where \f$ t \in [t_{min}, t_{max}] \f$
/// with a, b, c and d the control points.
///
template<typename Point, typename T_Point>
T_Point make_cubic_vector(Point const& a, Point const& b, Point const& c, Point const &d)
{
T_Point res;
res.push_back(a);res.push_back(b);res.push_back(c);res.push_back(d);
return res;
}
template<typename Time, typename Numeric, std::size_t Dim, bool Safe,
typename Point, typename T_Point>
polynomial<Time,Numeric,Dim,Safe,Point,T_Point> create_cubic(Point const& a, Point const& b, Point const& c, Point const &d,
const Time t_min, const Time t_max)
{
T_Point coeffs = make_cubic_vector<Point, T_Point>(a,b,c,d);
return polynomial<Time,Numeric,Dim,Safe,Point,T_Point>(coeffs.begin(),coeffs.end(), t_min, t_max);
}
} // namespace curves
#endif //_STRUCT_CUBICSPLINE
......@@ -19,19 +19,19 @@
namespace curves
{
template <typename Point, std::size_t Dim=3>
struct curve_constraints
{
typedef Point point_t;
curve_constraints():
init_vel(point_t::Zero(Dim)),init_acc(init_vel),end_vel(init_vel),end_acc(init_vel){}
template <typename Point, std::size_t Dim=3>
struct curve_constraints
{
typedef Point point_t;
curve_constraints():
init_vel(point_t::Zero(Dim)),init_acc(init_vel),end_vel(init_vel),end_acc(init_vel){}
~curve_constraints(){}
~curve_constraints(){}
point_t init_vel;
point_t init_acc;
point_t end_vel;
point_t end_acc;
};
point_t init_vel;
point_t init_acc;
point_t end_vel;
point_t end_acc;
};
} // namespace curves
#endif //_CLASS_CUBICZEROVELACC
......@@ -39,10 +39,10 @@ namespace curves
struct polynomial : public curve_abc<Time, Numeric, Safe, Point>,
public serialization::Serializable< polynomial<Time, Numeric, Dim, Safe, Point, T_Point> >
{
typedef Point point_t;
typedef Point point_t;
typedef T_Point t_point_t;
typedef Time time_t;
typedef Numeric num_t;
typedef Time time_t;
typedef Numeric num_t;
typedef curve_abc<Time, Numeric, Safe, Point> curve_abc_t;
typedef Eigen::Matrix<double, Dim, Eigen::Dynamic> coeff_t;
typedef Eigen::Ref<coeff_t> coeff_t_ref;
......
......@@ -22,28 +22,28 @@
namespace curves
{
/// \brief Creates coefficient vector of a quintic spline defined on the interval
/// \f$[t_{min}, t_{max}]\f$. It follows the equation :<br>
/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 + e(t - t_{min})^4 + f(t - t_{min})^5 \f$ <br>
/// where \f$ t \in [t_{min}, t_{max}] \f$.
///
template<typename Point, typename T_Point>
T_Point make_quintic_vector(Point const& a, Point const& b, Point const& c,
Point const &d, Point const& e, Point const& f)
{
T_Point res;
res.push_back(a);res.push_back(b);res.push_back(c);
res.push_back(d);res.push_back(e);res.push_back(f);
return res;
}
template<typename Time, typename Numeric, std::size_t Dim, bool Safe, typename Point, typename T_Point>
polynomial<Time,Numeric,Dim,Safe,Point,T_Point> create_quintic(Point const& a, Point const& b, Point const& c, Point const &d, Point const &e, Point const &f,
const Time t_min, const Time t_max)
{
T_Point coeffs = make_quintic_vector<Point, T_Point>(a,b,c,d,e,f);
return polynomial<Time,Numeric,Dim,Safe,Point,T_Point>(coeffs.begin(),coeffs.end(), t_min, t_max);
}
/// \brief Creates coefficient vector of a quintic spline defined on the interval
/// \f$[t_{min}, t_{max}]\f$. It follows the equation :<br>
/// \f$ x(t) = a + b(t - t_{min}) + c(t - t_{min})^2 + d(t - t_{min})^3 + e(t - t_{min})^4 + f(t - t_{min})^5 \f$ <br>
/// where \f$ t \in [t_{min}, t_{max}] \f$.
///
template<typename Point, typename T_Point>
T_Point make_quintic_vector(Point const& a, Point const& b, Point const& c,
Point const &d, Point const& e, Point const& f)
{
T_Point res;
res.push_back(a);res.push_back(b);res.push_back(c);
res.push_back(d);res.push_back(e);res.push_back(f);
return res;
}
template<typename Time, typename Numeric, std::size_t Dim, bool Safe, typename Point, typename T_Point>
polynomial<Time,Numeric,Dim,Safe,Point,T_Point> create_quintic(Point const& a, Point const& b, Point const& c, Point const &d, Point const &e, Point const &f,
const Time t_min, const Time t_max)
{
T_Point coeffs = make_quintic_vector<Point, T_Point>(a,b,c,d,e,f);
return polynomial<Time,Numeric,Dim,Safe,Point,T_Point>(coeffs.begin(),coeffs.end(), t_min, t_max);
}
} // namespace curves
#endif //_STRUCT_QUINTIC_SPLINE
......@@ -8,33 +8,33 @@
namespace curves
{
typedef double real;
typedef Eigen::Vector3d point_t;
typedef Eigen::Vector3d tangent_t;
typedef Eigen::VectorXd vectorX_t;
typedef std::pair<point_t, tangent_t> pair_point_tangent_t;
typedef Eigen::Matrix<double, 6, 1, 0, 6, 1> point6_t;
typedef Eigen::Matrix<double, 3, 1, 0, 3, 1> ret_point_t;
typedef Eigen::Matrix<double, 6, 1, 0, 6, 1> ret_point6_t;
typedef Eigen::VectorXd time_waypoints_t;
typedef Eigen::Matrix<real, 3, Eigen::Dynamic> point_list_t;
typedef Eigen::Matrix<real, 6, Eigen::Dynamic> point_list6_t;
typedef std::vector<point_t,Eigen::aligned_allocator<point_t> > t_point_t;
typedef std::vector<point6_t,Eigen::aligned_allocator<point6_t> > t_point6_t;
typedef std::pair<real, point_t> Waypoint;
typedef std::vector<Waypoint> T_Waypoint;
typedef std::pair<real, point6_t> Waypoint6;
typedef std::vector<Waypoint6> T_Waypoint6;
typedef double real;
typedef Eigen::Vector3d point_t;
typedef Eigen::Vector3d tangent_t;
typedef Eigen::VectorXd vectorX_t;
typedef std::pair<point_t, tangent_t> pair_point_tangent_t;
typedef Eigen::Matrix<double, 6, 1, 0, 6, 1> point6_t;
typedef Eigen::Matrix<double, 3, 1, 0, 3, 1> ret_point_t;
typedef Eigen::Matrix<double, 6, 1, 0, 6, 1> ret_point6_t;
typedef Eigen::VectorXd time_waypoints_t;
typedef Eigen::Matrix<real, 3, Eigen::Dynamic> point_list_t;
typedef Eigen::Matrix<real, 6, Eigen::Dynamic> point_list6_t;
typedef std::vector<point_t,Eigen::aligned_allocator<point_t> > t_point_t;
typedef std::vector<point6_t,Eigen::aligned_allocator<point6_t> > t_point6_t;
typedef std::pair<real, point_t> Waypoint;
typedef std::vector<Waypoint> T_Waypoint;
typedef std::pair<real, point6_t> Waypoint6;
typedef std::vector<Waypoint6> T_Waypoint6;
template <typename PointList, typename T_Point>
T_Point vectorFromEigenArray(const PointList& array)
{
T_Point res;
for(int i =0;i<array.cols();++i)
{
res.push_back(array.col(i));
}
return res;
}
template <typename PointList, typename T_Point>
T_Point vectorFromEigenArray(const PointList& array)
{
T_Point res;
for(int i =0;i<array.cols();++i)
{
res.push_back(array.col(i));
}
return res;
}
} //namespace curves
#endif //_DEFINITION_PYTHON_BINDINGS
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment