bezier_curve.h 10.5 KB
Newer Older
1
/**
2
* \file bezier_curve.h
3 4 5 6 7 8 9 10 11 12
* \brief class allowing to create a Bezier curve of dimension 1 <= n <= 3.
* \author Steve T.
* \version 0.1
* \date 06/17/2013
*/


#ifndef _CLASS_BEZIERCURVE
#define _CLASS_BEZIERCURVE

stonneau's avatar
stonneau committed
13
#include "curve_abc.h"
14
#include "bernstein.h"
15
#include "curve_constraint.h"
16 17 18 19

#include "MathDefs.h"

#include <vector>
20
#include <stdexcept>
21

22 23
#include <iostream>

24 25
namespace spline
{
26
/// \class BezierCurve
27 28 29
/// \brief Represents a Bezier curve of arbitrary dimension and order.
/// For degree lesser than 4, the evaluation is analitycal.Otherwise
/// the bernstein polynoms are used to evaluate the spline at a given location.
30
///
31
template<typename Time= double, typename Numeric=Time, std::size_t Dim=3, bool Safe=false
32
, typename Point= Eigen::Matrix<Numeric, Dim, 1> >
33
struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
34 35 36
{
	typedef Point 	point_t;
	typedef Time 	time_t;
37
    typedef Numeric	num_t;
38
    typedef curve_constraints<point_t> curve_constraints_t;
39
    typedef std::vector<point_t,Eigen::aligned_allocator<point_t> > t_point_t;
40
    typedef typename t_point_t::const_iterator cit_point_t;
41
    typedef bezier_curve<Time, Numeric, Dim, Safe, Point > bezier_curve_t;
42

43 44
/* Constructors - destructors */
	public:
45 46
	///\brief Constructor
	///\param PointsBegin, PointsEnd : the points parametering the Bezier curve
47
    ///
48
	template<typename In>
49 50 51
    bezier_curve(In PointsBegin, In PointsEnd)
    : T_(1.)
    , mult_T_(1.)
52
	, size_(std::distance(PointsBegin, PointsEnd))
Steve Tonneau's avatar
Steve Tonneau committed
53
    , degree_(size_-1)
stevet's avatar
stevet committed
54
    , bernstein_(spline::makeBernstein<num_t>((unsigned int)degree_))
55
    {
56
        assert(bernstein_.size() == size_);
57
		In it(PointsBegin);
58
        if(Safe && (size_<1 || T_ <= 0.))
59
            throw std::out_of_range("can't create bezier min bound is higher than max bound"); // TODO
60 61 62 63
        for(; it != PointsEnd; ++it)
            pts_.push_back(*it);
    }

64 65 66 67 68 69 70 71 72
    ///\brief Constructor
    ///\param PointsBegin, PointsEnd : the points parametering the Bezier curve
    ///
    template<typename In>
    bezier_curve(In PointsBegin, In PointsEnd, const time_t T)
    : T_(T)
    , mult_T_(1.)
    , size_(std::distance(PointsBegin, PointsEnd))
    , degree_(size_-1)
stevet's avatar
stevet committed
73
    , bernstein_(spline::makeBernstein<num_t>((unsigned int)degree_))
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    {
        assert(bernstein_.size() == size_);
        In it(PointsBegin);
        if(Safe && (size_<1 || T_ <= 0.))
            throw std::out_of_range("can't create bezier min bound is higher than max bound"); // TODO
        for(; it != PointsEnd; ++it)
            pts_.push_back(*it);
    }



    ///\brief Constructor
    ///\param PointsBegin, PointsEnd : the points parametering the Bezier curve
    ///
    template<typename In>
    bezier_curve(In PointsBegin, In PointsEnd, const time_t T, const time_t mult_T)
    : T_(T)
    , mult_T_(mult_T)
    , size_(std::distance(PointsBegin, PointsEnd))
    , degree_(size_-1)
stevet's avatar
stevet committed
94
    , bernstein_(spline::makeBernstein<num_t>((unsigned int)degree_))
95 96 97 98 99 100 101 102
    {
        assert(bernstein_.size() == size_);
        In it(PointsBegin);
        if(Safe && (size_<1 || T_ <= 0.))
            throw std::out_of_range("can't create bezier min bound is higher than max bound"); // TODO
        for(; it != PointsEnd; ++it)
            pts_.push_back(*it);
    }
103 104 105 106 107 108 109 110

    ///\brief Constructor
    /// This constructor will add 4 points (2 after the first one, 2 before the last one)
    /// to ensure that velocity and acceleration constraints are respected
    ///\param PointsBegin, PointsEnd : the points parametering the Bezier curve
    ///\param constraints : constraints applying on start / end velocities and acceleration
    ///
    template<typename In>
111 112 113
    bezier_curve(In PointsBegin, In PointsEnd, const curve_constraints_t& constraints, const time_t T=1.)
    : T_(T)
    , mult_T_(1.)
114 115
    , size_(std::distance(PointsBegin, PointsEnd)+4)
    , degree_(size_-1)
stevet's avatar
stevet committed
116
    , bernstein_(spline::makeBernstein<num_t>((unsigned int)degree_))
117
    {
118
        if(Safe && (size_<1 || T_ <= 0.))
119 120 121 122 123
            throw std::out_of_range("can't create bezier min bound is higher than max bound");
        t_point_t updatedList = add_constraints<In>(PointsBegin, PointsEnd, constraints);
        for(cit_point_t cit = updatedList.begin(); cit != updatedList.end(); ++cit)
            pts_.push_back(*cit);
    }
124

125
	///\brief Destructor
stonneau's avatar
stonneau committed
126
	~bezier_curve()
127 128 129
	{
		// NOTHING
	}
130 131

	private:
132 133
//	bezier_curve(const bezier_curve&);
//  bezier_curve& operator=(const bezier_curve&);
134 135 136 137 138 139
/* Constructors - destructors */

/*Operations*/
	public:
	///  \brief Evaluation of the cubic spline at time t.
	///  \param t : the time when to evaluate the spine
140
	///  \param return : the value x(t)
141
    virtual point_t operator()(const time_t t) const
142
	{
143
        num_t nT = t /  T_;
144 145
		if(Safe &! (0 <= nT && nT <= 1))
		{
146
            throw std::out_of_range("can't evaluate bezier curve, out of range"); // TODO
147
        }
148
		else
149 150
        {
            num_t dt = (1 - nT);
151
			switch(size_)
152 153
            {
                case 1 :
154
                    return mult_T_ * pts_[0];
155
				case 2 :
156
                    return mult_T_ * (pts_[0] * dt +  nT * pts_[1]);
157 158
				break;
				case 3 :
159
                    return 	mult_T_ * (pts_[0] * dt * dt
160
                       				+ 2 * pts_[1] * nT * dt
161
                        + pts_[2] * nT * nT);
162
				break;
163
                case 4 :
164
                    return 	mult_T_ * (pts_[0] * dt * dt * dt
165 166
						+ 3 * pts_[1] * nT * dt * dt 
						+ 3 * pts_[2] * nT * nT * dt 
167
                        + pts_[3] * nT * nT *nT);
168
                default :
169
                    return mult_T_ * evalHorner(nT);
170 171 172 173
				break;
			}
		}
	}
174

175 176 177 178 179 180 181 182
    ///  \brief Computes the derivative curve at order N.
    ///  \param order : order of the derivative
    ///  \param return : the value x(t)
    bezier_curve_t compute_derivate(const std::size_t order) const
    {
        if(order == 0) return *this;
        t_point_t derived_wp;
        for(typename t_point_t::const_iterator pit =  pts_.begin(); pit != pts_.end()-1; ++pit)
stevet's avatar
stevet committed
183
            derived_wp.push_back((num_t)degree_ * (*(pit+1) - (*pit)));
184 185
        if(derived_wp.empty())
            derived_wp.push_back(point_t::Zero());
186
        bezier_curve_t deriv(derived_wp.begin(), derived_wp.end(),T_, mult_T_ * (1./T_) );
187 188 189
        return deriv.compute_derivate(order-1);
    }

190 191 192 193 194 195
    ///  \brief Computes the primitive of the curve at order N.
    ///  \param constant : value of the primitive at t = 0
    ///  \param return : the curve x_1(t) such that d/dt(x_1(t)) = x_1(t)
    bezier_curve_t compute_primitive(const std::size_t order) const
    {
        if(order == 0) return *this;
Steve Tonneau's avatar
Steve Tonneau committed
196
        num_t new_degree = (num_t)(degree_+1);
197 198 199 200 201 202 203 204 205 206
        t_point_t n_wp;
        point_t current_sum =  point_t::Zero();
        // recomputing waypoints q_i from derivative waypoints p_i. q_0 is the given constant.
        // then q_i = (sum( j = 0 -> j = i-1) p_j) /n+1
        n_wp.push_back(current_sum);
        for(typename t_point_t::const_iterator pit =  pts_.begin(); pit != pts_.end(); ++pit)
        {
            current_sum += *pit;
            n_wp.push_back(current_sum / new_degree);
        }
207
        bezier_curve_t integ(n_wp.begin(), n_wp.end(),T_, mult_T_*T_);
208 209 210
        return integ.compute_primitive(order-1);
    }

211 212 213 214 215 216
    ///  \brief Evaluates the derivative at order N of the curve.
    ///  If the derivative is to be evaluated several times, it is
    ///  rather recommended to compute the derivative curve using compute_derivate
    ///  \param order : order of the derivative
    ///  \param t : the time when to evaluate the spine
    ///  \param return : the value x(t)
217
    virtual point_t derivate(const time_t t, const std::size_t order) const
218 219 220 221 222
    {
        bezier_curve_t deriv =compute_derivate(order);
        return deriv(t);
    }

223 224
    ///
    /// \brief Evaluates all Bernstein polynomes for a certain degree
225 226
    /// Warning: the horner scheme is about 100 times faster than this method.
    /// This method will probably be removed in the future
227 228 229 230 231 232 233 234 235 236 237
    ///
    point_t evalBernstein(const Numeric u) const
    {
        point_t res = point_t::Zero();
        typename t_point_t::const_iterator pts_it = pts_.begin();
        for(typename std::vector<Bern<Numeric> >::const_iterator cit = bernstein_.begin();
            cit !=bernstein_.end(); ++cit, ++pts_it)
            res += cit->operator()(u) * (*pts_it);
        return res;
    }

238 239 240 241 242 243 244 245 246 247 248 249

    ///
    /// \brief Evaluates all Bernstein polynomes for a certain degree using horner's scheme
    ///
    point_t evalHorner(const Numeric t) const
    {
        typename t_point_t::const_iterator pts_it = pts_.begin();
        Numeric u, bc, tn;
        u = 1.0 - t;
        bc = 1;
        tn = 1;
        point_t tmp =(*pts_it)*u; ++pts_it;
stevet's avatar
stevet committed
250
        for(unsigned int i=1; i<degree_; i++, ++pts_it)
251 252
        {
            tn = tn*t;
stevet's avatar
stevet committed
253
            bc = bc*((num_t)(degree_-i+1))/i;
254 255 256 257 258
            tmp = (tmp + tn*bc*(*pts_it))*u;
        }
        return (tmp + tn*t*(*pts_it));
    }

Steve Tonneau's avatar
Steve Tonneau committed
259
    const t_point_t& waypoints() const {return pts_;}
Steve Tonneau's avatar
Steve Tonneau committed
260

261 262 263 264 265 266 267
    private:
    template<typename In>
    t_point_t add_constraints(In PointsBegin, In PointsEnd, const curve_constraints_t& constraints)
    {
        t_point_t res;
        point_t P0, P1, P2, P_n_2, P_n_1, PN;
        P0 = *PointsBegin; PN = *(PointsEnd-1);
stevet's avatar
stevet committed
268 269 270 271
        P1    = P0+ constraints.init_vel / (num_t)degree_;
        P_n_1 = PN -constraints.end_vel  / (num_t)degree_;
        P2    = constraints.init_acc / (num_t)(degree_ * (degree_-1)) + 2* P1    - P0;
        P_n_2 = constraints.end_acc  / (num_t)(degree_ * (degree_-1)) + 2* P_n_1 - PN;
272 273 274 275 276 277 278 279 280 281 282 283 284 285

        res.push_back(P0);
        res.push_back(P1);
        res.push_back(P2);

        for(In it = PointsBegin+1; it != PointsEnd-1; ++it)
            res.push_back(*it);

        res.push_back(P_n_2);
        res.push_back(P_n_1);
        res.push_back(PN);
        return res;
    }

286
/*Operations*/
287 288

/*Helpers*/
289
    public:
290 291
    virtual time_t min() const{return 0.;}
    virtual time_t max() const{return T_;}
292 293 294
/*Helpers*/

	public:
295 296
    /*const*/ time_t T_;
    /*const*/ time_t mult_T_;
297 298 299
    /*const*/ std::size_t size_;
    /*const*/ std::size_t degree_;
    /*const*/ std::vector<Bern<Numeric> > bernstein_;
300
	
301 302 303
    private:
    t_point_t  pts_;

t steve's avatar
t steve committed
304 305 306 307 308 309 310
    public:
    static bezier_curve_t zero(const time_t T=1.)
    {
        std::vector<point_t> ts;
        ts.push_back(point_t::Zero());
        return bezier_curve_t(ts.begin(), ts.end(),T);
    }
311
};
312 313 314
}
#endif //_CLASS_BEZIERCURVE