Commit f6d66447 by Florent Lamiraux

### [doc] Make LiegroupSpace::dIntegrate_[dq|dv] clearer.

  - use Mathjax in Doxyfile.extra.in.
parent ac34244f
Pipeline #14532 passed with stage
in 12 minutes and 31 seconds
 ... ... @@ -8,3 +8,4 @@ INPUT = @CMAKE_SOURCE_DIR@/include \ PREDEFINED = HPP_PINOCCHIO_PARSED_BY_DOXYGEN EXAMPLE_PATH = @CMAKE_SOURCE_DIR@ USE_MATHJAX = YES
 ... ... @@ -188,7 +188,7 @@ namespace hpp { /// Return exponential of a tangent vector LiegroupElement exp (vectorIn_t v) const; /// Compute the Jacobian of the integration operation with respect to q. /// Compute the Jacobian of the integration operation with respect to \f$\mathbf{q}\f$. /// /// Given \f$\mathbf{p} = \mathbf{q} + \mathbf{v} \f$, /// compute \f$J_{\mathbf{q}}\f$ such that ... ... @@ -196,40 +196,42 @@ namespace hpp { /// \f{equation} /// \dot{\mathbf{p}} = J_{\mathbf{q}}\dot{\mathbf{q}} /// \f} /// for constant \f$\mathbf{v}\f$ /// for constant \f$\mathbf{v}\f$. \f$J_{\mathbf{q}}\f$ is a block /// diagonal matrix, each block corresponding to an elementary Lie group. /// /// \tparam side side to multiply in place the Jacobian blocks. See /// "Return values" for an explanation. /// \param q the configuration, /// \param v the velocity vector, /// \retval Jq the Jacobian (initialized as identity) /// /// \note For each elementary Lie group in q.space (), ranging /// over indices \f$[iq, iq+nq-1]\f$, the Jacobian /// \f$J_{Lg} (q [iq:iq+nq])\f$ is computed by method /// ::pinocchio::LieGroupBase::dIntegrate_dq. /// lines \f$[iq:iq+nq]\f$ of Jq are then left multiplied by /// \f$J_{Lg} (q [iq:iq+nq])\f$. /// \retval J in place multiplied result. \f$J\leftarrow J.J_{\mathbf{q}}\f$ if side is /// InputTimesDerivative /// \f$J\leftarrow J_{\mathbf{q}}.J\f$ if side is /// DerivativeTimesInput. If \f$J\f$ is initialized to identity, /// both results are the same. template void dIntegrate_dq (LiegroupElementConstRef q, vectorIn_t v, matrixOut_t Jq) const; void dIntegrate_dq (LiegroupElementConstRef q, vectorIn_t v, matrixOut_t J) const; /// Compute the Jacobian of the integration operation with respect to v. /// Compute the Jacobian of the integration operation with respect to \f$\mathbf{v}\f$. /// /// Given \f$\mathbf{p} = \mathbf{q} + \mathbf{v} \f$, /// compute \f$J_{\mathbf{v}}\f$ such that /// compute \f$J_{\mathbf{q}}\f$ such that /// /// \f{equation} /// \dot{\mathbf{p}} = J_{\mathbf{v}}\dot{\mathbf{v}} /// \f} /// for constant \f$\mathbf{q}\f$ /// for constant \f$\mathbf{q}\f$. \f$J_{\mathbf{v}}\f$ is a block /// diagonal matrix, each block corresponding to an elementary Lie group. /// /// \tparam side side to multiply in place the Jacobian blocks. See /// "Return values" for an explanation. /// \param q the configuration, /// \param v the velocity vector, /// \retval Jv the Jacobian (initialized to identity) /// \note For each elementary Lie group in q.space (), ranging /// over indices \f$[iv, iv+nv-1]\f$, the Jacobian /// \f$J_{Lg} (q [iv:iv+nv])\f$ is computed by method /// ::pinocchio::LieGroupBase::dIntegrate_dq. /// lines \f$[iv:iv+nv]\f$ of Jv are then left multiplied by /// \f$J_{Lg} (q [iv:iv+nv])\f$. /// \retval J in place multiplied result. /// \f$J\leftarrow J.J_{\mathbf{v}}\f$ if side is /// InputTimesDerivative /// \f$J\leftarrow J_{\mathbf{v}}.J\f$ if side is /// DerivativeTimesInput. If \f$J\f$ is initialized to identity, /// both results are the same. template void dIntegrate_dv (LiegroupElementConstRef q, vectorIn_t v, matrixOut_t Jv) const; ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!