Commit f6d66447 authored by Florent Lamiraux's avatar Florent Lamiraux
Browse files

[doc] Make LiegroupSpace::dIntegrate_[dq|dv] clearer.

  - use Mathjax in Doxyfile.extra.in.
parent ac34244f
Pipeline #14532 passed with stage
in 12 minutes and 31 seconds
......@@ -8,3 +8,4 @@ INPUT = @CMAKE_SOURCE_DIR@/include \
PREDEFINED = HPP_PINOCCHIO_PARSED_BY_DOXYGEN
EXAMPLE_PATH = @CMAKE_SOURCE_DIR@
USE_MATHJAX = YES
......@@ -188,7 +188,7 @@ namespace hpp {
/// Return exponential of a tangent vector
LiegroupElement exp (vectorIn_t v) const;
/// Compute the Jacobian of the integration operation with respect to q.
/// Compute the Jacobian of the integration operation with respect to \f$\mathbf{q}\f$.
///
/// Given \f$ \mathbf{p} = \mathbf{q} + \mathbf{v} \f$,
/// compute \f$J_{\mathbf{q}}\f$ such that
......@@ -196,40 +196,42 @@ namespace hpp {
/// \f{equation}
/// \dot{\mathbf{p}} = J_{\mathbf{q}}\dot{\mathbf{q}}
/// \f}
/// for constant \f$\mathbf{v}\f$
/// for constant \f$\mathbf{v}\f$. \f$J_{\mathbf{q}}\f$ is a block
/// diagonal matrix, each block corresponding to an elementary Lie group.
///
/// \tparam side side to multiply in place the Jacobian blocks. See
/// "Return values" for an explanation.
/// \param q the configuration,
/// \param v the velocity vector,
/// \retval Jq the Jacobian (initialized as identity)
///
/// \note For each elementary Lie group in q.space (), ranging
/// over indices \f$[iq, iq+nq-1]\f$, the Jacobian
/// \f$J_{Lg} (q [iq:iq+nq])\f$ is computed by method
/// ::pinocchio::LieGroupBase::dIntegrate_dq.
/// lines \f$[iq:iq+nq]\f$ of Jq are then left multiplied by
/// \f$J_{Lg} (q [iq:iq+nq])\f$.
/// \retval J in place multiplied result. \f$J\leftarrow J.J_{\mathbf{q}}\f$ if side is
/// InputTimesDerivative
/// \f$J\leftarrow J_{\mathbf{q}}.J\f$ if side is
/// DerivativeTimesInput. If \f$J\f$ is initialized to identity,
/// both results are the same.
template <DerivativeProduct side>
void dIntegrate_dq (LiegroupElementConstRef q, vectorIn_t v, matrixOut_t Jq) const;
void dIntegrate_dq (LiegroupElementConstRef q, vectorIn_t v, matrixOut_t J) const;
/// Compute the Jacobian of the integration operation with respect to v.
/// Compute the Jacobian of the integration operation with respect to \f$\mathbf{v}\f$.
///
/// Given \f$ \mathbf{p} = \mathbf{q} + \mathbf{v} \f$,
/// compute \f$J_{\mathbf{v}}\f$ such that
/// compute \f$J_{\mathbf{q}}\f$ such that
///
/// \f{equation}
/// \dot{\mathbf{p}} = J_{\mathbf{v}}\dot{\mathbf{v}}
/// \f}
/// for constant \f$\mathbf{q}\f$
/// for constant \f$\mathbf{q}\f$. \f$J_{\mathbf{v}}\f$ is a block
/// diagonal matrix, each block corresponding to an elementary Lie group.
///
/// \tparam side side to multiply in place the Jacobian blocks. See
/// "Return values" for an explanation.
/// \param q the configuration,
/// \param v the velocity vector,
/// \retval Jv the Jacobian (initialized to identity)
/// \note For each elementary Lie group in q.space (), ranging
/// over indices \f$[iv, iv+nv-1]\f$, the Jacobian
/// \f$J_{Lg} (q [iv:iv+nv])\f$ is computed by method
/// ::pinocchio::LieGroupBase::dIntegrate_dq.
/// lines \f$[iv:iv+nv]\f$ of Jv are then left multiplied by
/// \f$J_{Lg} (q [iv:iv+nv])\f$.
/// \retval J in place multiplied result.
/// \f$J\leftarrow J.J_{\mathbf{v}}\f$ if side is
/// InputTimesDerivative
/// \f$J\leftarrow J_{\mathbf{v}}.J\f$ if side is
/// DerivativeTimesInput. If \f$J\f$ is initialized to identity,
/// both results are the same.
template <DerivativeProduct side>
void dIntegrate_dv (LiegroupElementConstRef q, vectorIn_t v, matrixOut_t Jv) const;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment