narrowphase.h 21.1 KB
Newer Older
1
2
3
/*
 * Software License Agreement (BSD License)
 *
4
5
 *  Copyright (c) 2011-2014, Willow Garage, Inc.
 *  Copyright (c) 2014-2015, Open Source Robotics Foundation
6
 *  Copyright (c) 2018-2019, Centre National de la Recherche Scientifique
7
8
9
10
11
12
13
14
15
16
17
18
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
19
 *   * Neither the name of Open Source Robotics Foundation nor the names of its
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

37
/** \author Jia Pan, Florent Lamiraux */
38

Joseph Mirabel's avatar
Joseph Mirabel committed
39
40
#ifndef HPP_FCL_NARROWPHASE_H
#define HPP_FCL_NARROWPHASE_H
41

42
#include <hpp/fcl/narrowphase/gjk.h>
43

44
45
namespace hpp
{
46
47
48
namespace fcl
{

49
  /// @brief collision and distance solver based on GJK algorithm implemented in fcl (rewritten the code from the GJK in bullet)
Guilhem Saurel's avatar
Guilhem Saurel committed
50
  struct HPP_FCL_DLLAPI GJKSolver
51
  {
52
53
    /// @brief intersection checking between two shapes
    template<typename S1, typename S2>
54
55
56
57
58
    bool shapeIntersect(const S1& s1, const Transform3f& tf1,
                        const S2& s2, const Transform3f& tf2,
                        FCL_REAL& distance_lower_bound,
                        bool enable_penetration,
                        Vec3f* contact_points, Vec3f* normal) const
59
60
    {
      Vec3f guess(1, 0, 0);
61
62
63
64
65
66
      support_func_guess_t support_hint;
      if(enable_cached_guess) {
        guess = cached_guess;
        support_hint = support_func_cached_guess;
      } else
        support_hint.setZero();
67
    
68
      details::MinkowskiDiff shape;
69
      shape.set (&s1, &s2, tf1, tf2);
70
  
71
      details::GJK gjk((unsigned int )gjk_max_iterations, gjk_tolerance);
72
      details::GJK::Status gjk_status = gjk.evaluate(shape, guess, support_hint);
73
74
75
76
      if(enable_cached_guess) {
        cached_guess = gjk.getGuessFromSimplex();
        support_func_cached_guess = gjk.support_hint;
      }
77
    
78
79
      Vec3f w0, w1;
      switch(gjk_status) {
80
        case details::GJK::Inside:
81
82
          if (!enable_penetration && contact_points == NULL && normal == NULL)
            return true;
83
84
          if (gjk.hasPenetrationInformation(shape)) {
            gjk.getClosestPoints (shape, w0, w1);
85
            distance_lower_bound = gjk.distance;
86
87
88
89
            if(normal) *normal = tf1.getRotation() * (w0 - w1).normalized();
            if(contact_points) *contact_points = tf1.transform((w0 + w1) / 2);
            return true;
          } else {
90
91
            details::EPA epa(epa_max_face_num, epa_max_vertex_num, epa_max_iterations, epa_tolerance);
            details::EPA::Status epa_status = epa.evaluate(gjk, -guess);
92
93
94
95
            if(epa_status & details::EPA::Valid
                || epa_status == details::EPA::OutOfFaces    // Warnings
                || epa_status == details::EPA::OutOfVertices // Warnings
                )
96
97
            {
              epa.getClosestPoints (shape, w0, w1);
98
              distance_lower_bound = -epa.depth;
99
              if(normal) *normal = tf1.getRotation() * epa.normal;
100
101
102
              if(contact_points) *contact_points = tf1.transform(w0 - epa.normal*(epa.depth *0.5));
              return true;
            }
103
            distance_lower_bound = -(std::numeric_limits<FCL_REAL>::max)();
104
105
            // EPA failed but we know there is a collision so we should
            return true;
106
          }
107
          break;
108
109
110
        case details::GJK::Valid:
          distance_lower_bound = gjk.distance;
          break;
111
112
        default:
          ;
113
      }
114

115
116
      return false;
    }
117

118
    //// @brief intersection checking between one shape and a triangle with transformation
Lucile Remigy's avatar
Lucile Remigy committed
119
    /// @return true if the shape are colliding.
120
121
122
123
124
125
126
    template<typename S>
    bool shapeTriangleInteraction
    (const S& s, const Transform3f& tf1, const Vec3f& P1, const Vec3f& P2,
     const Vec3f& P3, const Transform3f& tf2, FCL_REAL& distance,
     Vec3f& p1, Vec3f& p2, Vec3f& normal) const
    {
      bool col;
127
128
129
130
131
132
      // Express everything in frame 1
      const Transform3f tf_1M2 (tf1.inverseTimes(tf2));
      TriangleP tri(
          tf_1M2.transform (P1),
          tf_1M2.transform (P2),
          tf_1M2.transform (P3));
133

134
      Vec3f guess(1, 0, 0);
135
136
137
138
139
140
      support_func_guess_t support_hint;
      if(enable_cached_guess) {
        guess = cached_guess;
        support_hint = support_func_cached_guess;
      } else
        support_hint.setZero();
141

142
      details::MinkowskiDiff shape;
143
      shape.set (&s, &tri);
144
  
145
      details::GJK gjk((unsigned int )gjk_max_iterations, gjk_tolerance);
146
      details::GJK::Status gjk_status = gjk.evaluate(shape, guess, support_hint);
147
148
149
150
      if(enable_cached_guess) {
        cached_guess = gjk.getGuessFromSimplex();
        support_func_cached_guess = gjk.support_hint;
      }
151

152
153
      Vec3f w0, w1;
      switch(gjk_status) {
154
        case details::GJK::Inside:
155
156
157
158
159
160
161
          col = true;
          if (gjk.hasPenetrationInformation(shape)) {
            gjk.getClosestPoints (shape, w0, w1);
            distance = gjk.distance;
            normal = tf1.getRotation() * (w1 - w0).normalized();
            p1 = p2 = tf1.transform((w0 + w1) / 2);
          } else {
162
163
            details::EPA epa(epa_max_face_num, epa_max_vertex_num, epa_max_iterations, epa_tolerance);
            details::EPA::Status epa_status = epa.evaluate(gjk, -guess);
164
165
166
167
168
169
170
171
172
173
174
            if(epa_status & details::EPA::Valid
                || epa_status == details::EPA::OutOfFaces    // Warnings
                || epa_status == details::EPA::OutOfVertices // Warnings
                )
            {
              epa.getClosestPoints (shape, w0, w1);
              distance = -epa.depth;
              normal = -epa.normal;
              p1 = p2 = tf1.transform(w0 - epa.normal*(epa.depth *0.5));
              assert (distance <= 1e-6);
            } else {
175
              distance = -(std::numeric_limits<FCL_REAL>::max)();
176
177
178
              gjk.getClosestPoints (shape, w0, w1);
              p1 = p2 = tf1.transform (w0);
            }
179
          }
180
          break;
181
        case details::GJK::Valid:
182
        case details::GJK::Failed:
183
          col = false;
184

185
186
187
188
189
          gjk.getClosestPoints (shape, p1, p2);
          // TODO On degenerated case, the closest point may be wrong
          // (i.e. an object face normal is colinear to gjk.ray
          // assert (distance == (w0 - w1).norm());
          distance = gjk.distance;
190

191
192
193
          p1 = tf1.transform (p1);
          p2 = tf1.transform (p2);
          assert (distance > 0);
194
195
          break;
        default:
Florent Lamiraux's avatar
Florent Lamiraux committed
196
          assert (false && "should not reach type part.");
197
          return true;
198
199
200
201
202
203
        }
      return col;
    }

    /// @brief distance computation between two shapes
    template<typename S1, typename S2>
204
205
206
207
    bool shapeDistance(const S1& s1, const Transform3f& tf1,
                       const S2& s2, const Transform3f& tf2,
                       FCL_REAL& distance, Vec3f& p1, Vec3f& p2,
                       Vec3f& normal) const
208
    {
209
#ifndef NDEBUG
Florent Lamiraux's avatar
Florent Lamiraux committed
210
      FCL_REAL eps (sqrt(std::numeric_limits<FCL_REAL>::epsilon()));
211
#endif
212
      Vec3f guess(1, 0, 0);
213
214
215
216
217
218
      support_func_guess_t support_hint;
      if(enable_cached_guess) {
        guess = cached_guess;
        support_hint = support_func_cached_guess;
      } else
        support_hint.setZero();
219
220

      details::MinkowskiDiff shape;
221
      shape.set (&s1, &s2, tf1, tf2);
222
223

      details::GJK gjk((unsigned int) gjk_max_iterations, gjk_tolerance);
224
      details::GJK::Status gjk_status = gjk.evaluate(shape, guess, support_hint);
225
226
227
228
      if(enable_cached_guess) {
        cached_guess = gjk.getGuessFromSimplex();
        support_func_cached_guess = gjk.support_hint;
      }
229

Florent Lamiraux's avatar
Florent Lamiraux committed
230
231
232
233
      if(gjk_status == details::GJK::Failed)
      {
        // TODO: understand why GJK fails between cylinder and box
        assert (distance * distance < sqrt (eps));
234
        Vec3f w0, w1;
235
        gjk.getClosestPoints (shape, w0, w1);
Florent Lamiraux's avatar
Florent Lamiraux committed
236
237
238
239
240
241
        distance = 0;
        p1 = p2 = tf1.transform (.5* (w0 + w1));
        normal = Vec3f (0,0,0);
        return false;
      }
      else if(gjk_status == details::GJK::Valid)
242
        {
243
          gjk.getClosestPoints (shape, p1, p2);
244
245
246
247
          // TODO On degenerated case, the closest point may be wrong
          // (i.e. an object face normal is colinear to gjk.ray
          // assert (distance == (w0 - w1).norm());
          distance = gjk.distance;
248

249
          normal = (tf1.getRotation() * gjk.ray).normalized();
250
251
          p1 = tf1.transform (p1);
          p2 = tf1.transform (p2);
252
253
          return true;
        }
Florent Lamiraux's avatar
Florent Lamiraux committed
254
      else
255
        {
Florent Lamiraux's avatar
Florent Lamiraux committed
256
          assert (gjk_status == details::GJK::Inside);
257
258
259
          if (gjk.hasPenetrationInformation (shape)) {
            gjk.getClosestPoints (shape, p1, p2);
            distance = gjk.distance;
Joseph Mirabel's avatar
Joseph Mirabel committed
260
261
262
263
264
            // Return contact points in case of collision
            //p1 = tf1.transform (p1);
            //p2 = tf1.transform (p2);
            normal = (tf1.getRotation() * (p2 - p1)).normalized();
            p1 = p2 = tf1.transform(p1);
265
266
267
268
          } else {
            details::EPA epa(epa_max_face_num, epa_max_vertex_num,
                             epa_max_iterations, epa_tolerance);
            details::EPA::Status epa_status = epa.evaluate(gjk, -guess);
269
270
271
272
            if(epa_status & details::EPA::Valid
                || epa_status == details::EPA::OutOfFaces    // Warnings
                || epa_status == details::EPA::OutOfVertices // Warnings
                )
273
            {
274
275
276
              Vec3f w0, w1;
              epa.getClosestPoints (shape, w0, w1);
              assert (epa.depth >= -eps);
277
              distance = (std::min) (0., -epa.depth);
278
279
280
281
              // TODO should be
              // normal = tf1.getRotation() * epa.normal;
              normal = tf2.getRotation() * epa.normal;
              p1 = p2 = tf1.transform(w0 - epa.normal*(epa.depth *0.5));
282
              return false;
283
            }
284
            distance = -(std::numeric_limits<FCL_REAL>::max)();
285
286
            gjk.getClosestPoints (shape, p1, p2);
            p1 = p2 = tf1.transform (p1);
287
          }
288
          return false;
289
290
        }
    }
291

292
    /// @brief default setting for GJK algorithm
293
    GJKSolver()
294
    {
295
296
297
298
299
300
301
302
      gjk_max_iterations = 128;
      gjk_tolerance = 1e-6;
      epa_max_face_num = 128;
      epa_max_vertex_num = 64;
      epa_max_iterations = 255;
      epa_tolerance = 1e-6;
      enable_cached_guess = false;
      cached_guess = Vec3f(1, 0, 0);
303
      support_func_cached_guess = support_func_guess_t::Zero();
304
    }
305

306
307
308
    void enableCachedGuess(bool if_enable) const
    {
      enable_cached_guess = if_enable;
309
    }
310
311

    void setCachedGuess(const Vec3f& guess) const
312
    {
313
      cached_guess = guess;
314
    }
315
316

    Vec3f getCachedGuess() const
317
    {
318
      return cached_guess;
319
320
    }

321
322
    /// @brief maximum number of simplex face used in EPA algorithm
    unsigned int epa_max_face_num;
323

324
325
    /// @brief maximum number of simplex vertex used in EPA algorithm
    unsigned int epa_max_vertex_num;
326

327
328
    /// @brief maximum number of iterations used for EPA iterations
    unsigned int epa_max_iterations;
329

330
331
    /// @brief the threshold used in EPA to stop iteration
    FCL_REAL epa_tolerance;
332

333
334
    /// @brief the threshold used in GJK to stop iteration
    FCL_REAL gjk_tolerance;
335

336
337
    /// @brief maximum number of iterations used for GJK iterations
    FCL_REAL gjk_max_iterations;
338

339
340
    /// @brief Whether smart guess can be provided
    mutable bool enable_cached_guess;
341

342
343
    /// @brief smart guess
    mutable Vec3f cached_guess;
344
345
346

    /// @brief smart guess for the support function
    mutable support_func_guess_t support_func_cached_guess;
347
  };
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  template<>
  HPP_FCL_DLLAPI bool GJKSolver::shapeTriangleInteraction
  (const Sphere& s, const Transform3f& tf1, const Vec3f& P1, const Vec3f& P2,
   const Vec3f& P3, const Transform3f& tf2, FCL_REAL& distance,
   Vec3f& p1, Vec3f& p2, Vec3f& normal) const;

  template<>
  HPP_FCL_DLLAPI bool GJKSolver::shapeTriangleInteraction
  (const Halfspace& s, const Transform3f& tf1, const Vec3f& P1, const Vec3f& P2,
   const Vec3f& P3, const Transform3f& tf2, FCL_REAL& distance,
   Vec3f& p1, Vec3f& p2, Vec3f& normal) const;

  template<>
  HPP_FCL_DLLAPI bool GJKSolver::shapeTriangleInteraction
  (const Plane& s, const Transform3f& tf1, const Vec3f& P1, const Vec3f& P2,
   const Vec3f& P3, const Transform3f& tf2, FCL_REAL& distance,
   Vec3f& p1, Vec3f& p2, Vec3f& normal) const;

#define SHAPE_INTERSECT_SPECIALIZATION_BASE(S1,S2) \
template<> \
HPP_FCL_DLLAPI bool GJKSolver::shapeIntersect<S1, S2> \
 (const S1 &s1, const Transform3f& tf1, \
  const S2 &s2, const Transform3f& tf2, \
  FCL_REAL& distance_lower_bound, \
  bool, \
  Vec3f* contact_points, Vec3f* normal) const

#define SHAPE_INTERSECT_SPECIALIZATION(S1,S2) \
  SHAPE_INTERSECT_SPECIALIZATION_BASE(S1,S2); \
  SHAPE_INTERSECT_SPECIALIZATION_BASE(S2,S1)

  SHAPE_INTERSECT_SPECIALIZATION(Sphere,Capsule);
  SHAPE_INTERSECT_SPECIALIZATION_BASE(Sphere,Sphere);
  SHAPE_INTERSECT_SPECIALIZATION(Sphere,Box);
  SHAPE_INTERSECT_SPECIALIZATION(Sphere,Halfspace);
  SHAPE_INTERSECT_SPECIALIZATION(Sphere,Plane);

  SHAPE_INTERSECT_SPECIALIZATION(Halfspace,Box);
  SHAPE_INTERSECT_SPECIALIZATION(Halfspace,Capsule);
  SHAPE_INTERSECT_SPECIALIZATION(Halfspace,Cylinder);
  SHAPE_INTERSECT_SPECIALIZATION(Halfspace,Cone);
  SHAPE_INTERSECT_SPECIALIZATION(Halfspace,Plane);

  SHAPE_INTERSECT_SPECIALIZATION(Plane,Box);
  SHAPE_INTERSECT_SPECIALIZATION(Plane,Capsule);
  SHAPE_INTERSECT_SPECIALIZATION(Plane,Cylinder);
  SHAPE_INTERSECT_SPECIALIZATION(Plane,Cone);

#undef SHAPE_INTERSECT_SPECIALIZATION
#undef SHAPE_INTERSECT_SPECIALIZATION_BASE

#define SHAPE_DISTANCE_SPECIALIZATION_BASE(S1,S2) \
template<> \
HPP_FCL_DLLAPI bool GJKSolver::shapeDistance<S1, S2> \
 (const S1& s1, const Transform3f& tf1, \
  const S2& s2, const Transform3f& tf2, \
  FCL_REAL& dist, Vec3f& p1, Vec3f& p2, Vec3f& normal) const

#define SHAPE_DISTANCE_SPECIALIZATION(S1,S2) \
  SHAPE_DISTANCE_SPECIALIZATION_BASE(S1,S2); \
  SHAPE_DISTANCE_SPECIALIZATION_BASE(S2,S1)

  SHAPE_DISTANCE_SPECIALIZATION(Sphere,Capsule);
  SHAPE_DISTANCE_SPECIALIZATION(Sphere,Box);
  SHAPE_DISTANCE_SPECIALIZATION(Sphere,Cylinder);
  SHAPE_DISTANCE_SPECIALIZATION_BASE(Sphere,Sphere);
  SHAPE_DISTANCE_SPECIALIZATION_BASE(Capsule,Capsule);
  SHAPE_DISTANCE_SPECIALIZATION_BASE(TriangleP,TriangleP);

#undef SHAPE_DISTANCE_SPECIALIZATION
#undef SHAPE_DISTANCE_SPECIALIZATION_BASE

Joseph Mirabel's avatar
Joseph Mirabel committed
421
#if __cplusplus < 201103L
Justin Carpentier's avatar
Justin Carpentier committed
422
423
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wc99-extensions"
Joseph Mirabel's avatar
Joseph Mirabel committed
424
#endif
425
426
427
428
  /// \name Shape intersection specializations
  /// \{

// param doc is the doxygen detailled description (should be enclosed in /** */
429
// and contain no dot for some obscure reasons).
430
431
432
433
#define HPP_FCL_DECLARE_SHAPE_INTERSECT(Shape1,Shape2,doc)                     \
  /** @brief Fast implementation for Shape1-Shape2 collision. */               \
  doc                                                                          \
  template<>                                                                   \
434
    HPP_FCL_DLLAPI bool GJKSolver::shapeIntersect<Shape1, Shape2>                             \
435
436
    (const Shape1& s1, const Transform3f& tf1,                                 \
     const Shape2& s2, const Transform3f& tf2,                                 \
437
438
     FCL_REAL& distance_lower_bound, bool enable_penetration,                  \
     Vec3f* contact_points, Vec3f* normal) const
439
440
441
442
443
#define HPP_FCL_DECLARE_SHAPE_INTERSECT_SELF(Shape,doc)                        \
  HPP_FCL_DECLARE_SHAPE_INTERSECT(Shape,Shape,doc)
#define HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Shape1,Shape2,doc)                \
  HPP_FCL_DECLARE_SHAPE_INTERSECT(Shape1,Shape2,doc);                          \
  HPP_FCL_DECLARE_SHAPE_INTERSECT(Shape2,Shape1,doc)
444

445
446
447
448
  HPP_FCL_DECLARE_SHAPE_INTERSECT_SELF(Sphere,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Sphere, Capsule,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Sphere, Halfspace,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Sphere, Plane,);
449

450
451
452
453
454
455
456
  template<>
  HPP_FCL_DLLAPI bool GJKSolver::shapeIntersect<Box, Sphere>
  (const Box& s1, const Transform3f& tf1,
   const Sphere& s2, const Transform3f& tf2,
   FCL_REAL& distance_lower_bound, bool enable_penetration,
   Vec3f* contact_points, Vec3f* normal) const;

457
458
459
460
#ifdef IS_DOXYGEN // for doxygen only
  /** \todo currently disabled and to re-enable it, API of function
   *  \ref obbDisjointAndLowerBoundDistance should be modified.
   *  */
461
462
  template<>
  HPP_FCL_DLLAPI bool GJKSolver::shapeIntersect<Box, Box>
463
464
465
466
467
468
    (const Box& s1, const Transform3f& tf1,
     const Box& s2, const Transform3f& tf2,
     FCL_REAL& distance_lower_bound, bool enable_penetration,
     Vec3f* contact_points, Vec3f* normal) const;
#endif
  //HPP_FCL_DECLARE_SHAPE_INTERSECT_SELF(Box,);
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Box, Halfspace,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Box, Plane,);

  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Capsule, Halfspace,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Capsule, Plane,);

  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Cylinder, Halfspace,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Cylinder, Plane,);

  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Cone, Halfspace,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Cone, Plane,);

  HPP_FCL_DECLARE_SHAPE_INTERSECT_SELF(Halfspace,);

  HPP_FCL_DECLARE_SHAPE_INTERSECT_SELF(Plane,);
  HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR(Plane, Halfspace,);
485

486
487
488
489
490
491
492
493
494
#undef HPP_FCL_DECLARE_SHAPE_INTERSECT
#undef HPP_FCL_DECLARE_SHAPE_INTERSECT_SELF
#undef HPP_FCL_DECLARE_SHAPE_INTERSECT_PAIR

  /// \}

  /// \name Shape triangle interaction specializations
  /// \{

495
496
// param doc is the doxygen detailled description (should be enclosed in /** */
// and contain no dot for some obscure reasons).
497
498
499
#define HPP_FCL_DECLARE_SHAPE_TRIANGLE(Shape,doc)                              \
  /** @brief Fast implementation for Shape-Triangle interaction. */            \
  doc                                                                          \
500
  template<> HPP_FCL_DLLAPI bool GJKSolver::shapeTriangleInteraction<Shape>                   \
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    (const Shape& s, const Transform3f& tf1, const Vec3f& P1, const Vec3f& P2, \
     const Vec3f& P3, const Transform3f& tf2, FCL_REAL& distance,              \
     Vec3f& p1, Vec3f& p2, Vec3f& normal) const

  HPP_FCL_DECLARE_SHAPE_TRIANGLE(Sphere,);
  HPP_FCL_DECLARE_SHAPE_TRIANGLE(Halfspace,);
  HPP_FCL_DECLARE_SHAPE_TRIANGLE(Plane,);

#undef HPP_FCL_DECLARE_SHAPE_TRIANGLE

  /// \}

  /// \name Shape distance specializations
  /// \{

// param doc is the doxygen detailled description (should be enclosed in /** */
517
// and contain no dot for some obscure reasons).
518
#define HPP_FCL_DECLARE_SHAPE_DISTANCE(Shape1,Shape2,doc)                      \
519
520
  /** @brief Fast implementation for Shape1-Shape2 distance. */                \
  doc                                                                          \
521
  template<>                                                                   \
522
    bool HPP_FCL_DLLAPI GJKSolver::shapeDistance<Shape1, Shape2>                              \
523
524
525
    (const Shape1& s1, const Transform3f& tf1,                                 \
     const Shape2& s2, const Transform3f& tf2,                                 \
     FCL_REAL& dist, Vec3f& p1, Vec3f& p2, Vec3f& normal) const
526
527
528
529
530
531
532
533
534
535
536
537
#define HPP_FCL_DECLARE_SHAPE_DISTANCE_SELF(Shape,doc)                         \
  HPP_FCL_DECLARE_SHAPE_DISTANCE(Shape,Shape,doc)
#define HPP_FCL_DECLARE_SHAPE_DISTANCE_PAIR(Shape1,Shape2,doc)                 \
  HPP_FCL_DECLARE_SHAPE_DISTANCE(Shape1,Shape2,doc);                           \
  HPP_FCL_DECLARE_SHAPE_DISTANCE(Shape2,Shape1,doc)

  HPP_FCL_DECLARE_SHAPE_DISTANCE_PAIR(Sphere, Box,);
  HPP_FCL_DECLARE_SHAPE_DISTANCE_PAIR(Sphere, Capsule,);
  HPP_FCL_DECLARE_SHAPE_DISTANCE_PAIR(Sphere, Cylinder,);
  HPP_FCL_DECLARE_SHAPE_DISTANCE_SELF(Sphere,);

  HPP_FCL_DECLARE_SHAPE_DISTANCE_SELF(Capsule,
538
539
      /** Closest points are based on two line-segments. */
      );
540
541

  HPP_FCL_DECLARE_SHAPE_DISTANCE_SELF(TriangleP,
542
543
      /** Do not run EPA algorithm to compute penetration depth. Use a dedicated method. */
      );
544
545
546
547

#undef HPP_FCL_DECLARE_SHAPE_DISTANCE
#undef HPP_FCL_DECLARE_SHAPE_DISTANCE_SELF
#undef HPP_FCL_DECLARE_SHAPE_DISTANCE_PAIR
548
549

  /// \}
Joseph Mirabel's avatar
Joseph Mirabel committed
550
#if __cplusplus < 201103L
Justin Carpentier's avatar
Justin Carpentier committed
551
#pragma GCC diagnostic pop
Joseph Mirabel's avatar
Joseph Mirabel committed
552
#endif
553
554
}

555
556
} // namespace hpp

557
#endif