collision_data.h 16.5 KB
Newer Older
1
2
3
/*
 * Software License Agreement (BSD License)
 *
4
5
 *  Copyright (c) 2011-2014, Willow Garage, Inc.
 *  Copyright (c) 2014-2015, Open Source Robotics Foundation
6
7
8
9
10
11
12
13
14
15
16
17
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
18
 *   * Neither the name of Open Source Robotics Foundation nor the names of its
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** \author Jia Pan */


sachinc's avatar
sachinc committed
39
40
41
42
#ifndef FCL_COLLISION_DATA_H
#define FCL_COLLISION_DATA_H

#include "fcl/collision_object.h"
panjia1983's avatar
panjia1983 committed
43
44
45
46
#include "fcl/learning/classifier.h"
#include "fcl/knn/nearest_neighbors.h"


47
#include "fcl/math/vec_3f.h"
sachinc's avatar
sachinc committed
48
#include <vector>
49
#include <set>
jpan's avatar
jpan committed
50
#include <limits>
sachinc's avatar
sachinc committed
51
52
53
54
55


namespace fcl
{

56
57
58
/// @brief Type of narrow phase GJK solver
enum GJKSolverType {GST_LIBCCD, GST_INDEP};

jpan's avatar
jpan committed
59
/// @brief Contact information returned by collision
sachinc's avatar
sachinc committed
60
61
struct Contact
{
jpan's avatar
jpan committed
62
  /// @brief collision object 1
63
  const CollisionGeometry* o1;
jpan's avatar
jpan committed
64
65

  /// @brief collision object 2
66
  const CollisionGeometry* o2;
jpan's avatar
jpan committed
67
68
69
70
71

  /// @brief contact primitive in object 1
  /// if object 1 is mesh or point cloud, it is the triangle or point id
  /// if object 1 is geometry shape, it is NONE (-1),
  /// if object 1 is octree, it is the id of the cell
sachinc's avatar
sachinc committed
72
  int b1;
jpan's avatar
jpan committed
73
74
75
76
77
78


  /// @brief contact primitive in object 2
  /// if object 2 is mesh or point cloud, it is the triangle or point id
  /// if object 2 is geometry shape, it is NONE (-1),
  /// if object 2 is octree, it is the id of the cell
sachinc's avatar
sachinc committed
79
  int b2;
jpan's avatar
jpan committed
80
81
82
83
84
85
86
87
88
89
90
91
 
  /// @brief contact normal, pointing from o1 to o2
  Vec3f normal;

  /// @brief contact position, in world space
  Vec3f pos;

  /// @brief penetration depth
  FCL_REAL penetration_depth;

 
  /// @brief invalid contact primitive information
jpan's avatar
   
jpan committed
92
  static const int NONE = -1;
sachinc's avatar
sachinc committed
93

jpan's avatar
jpan committed
94
95
96
97
98
  Contact() : o1(NULL),
              o2(NULL),
              b1(NONE),
              b2(NONE)
  {}
sachinc's avatar
sachinc committed
99

jpan's avatar
jpan committed
100
101
102
103
104
  Contact(const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_) : o1(o1_),
                                                                                          o2(o2_),
                                                                                          b1(b1_),
                                                                                          b2(b2_)
  {}
sachinc's avatar
sachinc committed
105

106
  Contact(const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_,
jpan's avatar
jpan committed
107
108
109
110
111
112
113
114
          const Vec3f& pos_, const Vec3f& normal_, FCL_REAL depth_) : o1(o1_),
                                                                      o2(o2_),
                                                                      b1(b1_),
                                                                      b2(b2_),
                                                                      normal(normal_),
                                                                      pos(pos_),
                                                                      penetration_depth(depth_)
  {}
jpan's avatar
   
jpan committed
115
116
117
118
119
120
121

  bool operator < (const Contact& other) const
  {
    if(b1 == other.b1)
      return b2 < other.b2;
    return b1 < other.b1;
  }
sachinc's avatar
sachinc committed
122
123
};

jpan's avatar
jpan committed
124
/// @brief Cost source describes an area with a cost. The area is described by an AABB region.
125
126
struct CostSource
{
jpan's avatar
jpan committed
127
  /// @brief aabb lower bound
128
  Vec3f aabb_min;
jpan's avatar
jpan committed
129
130

  /// @brief aabb upper bound
131
  Vec3f aabb_max;
jpan's avatar
jpan committed
132
133

  /// @brief cost density in the AABB region
jpan's avatar
jpan committed
134
135
  FCL_REAL cost_density;

isucan's avatar
isucan committed
136
137
  FCL_REAL total_cost;

jpan's avatar
jpan committed
138
139
140
141
  CostSource(const Vec3f& aabb_min_, const Vec3f& aabb_max_, FCL_REAL cost_density_) : aabb_min(aabb_min_),
                                                                                       aabb_max(aabb_max_),
                                                                                       cost_density(cost_density_)
  {
isucan's avatar
isucan committed
142
    total_cost = cost_density * (aabb_max[0] - aabb_min[0]) * (aabb_max[1] - aabb_min[1]) * (aabb_max[2] - aabb_min[2]);
jpan's avatar
jpan committed
143
144
  }

145
146
147
148
  CostSource(const AABB& aabb, FCL_REAL cost_density_) : aabb_min(aabb.min_),
                                                         aabb_max(aabb.max_),
                                                         cost_density(cost_density_)
  {
isucan's avatar
isucan committed
149
    total_cost = cost_density * (aabb_max[0] - aabb_min[0]) * (aabb_max[1] - aabb_min[1]) * (aabb_max[2] - aabb_min[2]);
150
151
  }

jpan's avatar
jpan committed
152
  CostSource() {}
jpan's avatar
   
jpan committed
153
154
155

  bool operator < (const CostSource& other) const
  {
isucan's avatar
isucan committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    if(total_cost < other.total_cost) 
      return false;
    if(total_cost > other.total_cost)
      return true;
    
    if(cost_density < other.cost_density)
      return false;
    if(cost_density > other.cost_density)
      return true;
  
    for(size_t i = 0; i < 3; ++i)
      if(aabb_min[i] != other.aabb_min[i])
	return aabb_min[i] < other.aabb_min[i];
 
    return false;
jpan's avatar
   
jpan committed
171
  }
172
173
};

174
175
struct CollisionResult;

jpan's avatar
jpan committed
176
/// @brief request to the collision algorithm
177
struct CollisionRequest
178
{  
jpan's avatar
jpan committed
179
  /// @brief The maximum number of contacts will return
jpan's avatar
jpan committed
180
  size_t num_max_contacts;
jpan's avatar
jpan committed
181
182

  /// @brief whether the contact information (normal, penetration depth and contact position) will return
183
  bool enable_contact;
jpan's avatar
jpan committed
184

185
186
187
  /// Whether a lower bound on distance is returned when objects are disjoint
  bool enable_distance_lower_bound;

jpan's avatar
jpan committed
188
  /// @brief The maximum number of cost sources will return
jpan's avatar
jpan committed
189
  size_t num_max_cost_sources;
jpan's avatar
jpan committed
190
191

  /// @brief whether the cost sources will be computed
192
193
  bool enable_cost;

jpan's avatar
   
jpan committed
194
195
196
  /// @brief whether the cost computation is approximated
  bool use_approximate_cost;

197
198
199
200
201
202
203
204
205
  /// @brief narrow phase solver
  GJKSolverType gjk_solver_type;

  /// @brief whether enable gjk intial guess
  bool enable_cached_gjk_guess;
  
  /// @brief the gjk intial guess set by user
  Vec3f cached_gjk_guess;

jpan's avatar
jpan committed
206
  CollisionRequest(size_t num_max_contacts_ = 1,
207
                   bool enable_contact_ = false,
208
		   bool enable_distance_lower_bound = false,
jpan's avatar
jpan committed
209
                   size_t num_max_cost_sources_ = 1,
jpan's avatar
   
jpan committed
210
                   bool enable_cost_ = false,
211
212
213
214
215
216
217
                   bool use_approximate_cost_ = true,
                   GJKSolverType gjk_solver_type_ = GST_LIBCCD) : num_max_contacts(num_max_contacts_),
                                                                  enable_contact(enable_contact_),
                                                                  num_max_cost_sources(num_max_cost_sources_),
                                                                  enable_cost(enable_cost_),
                                                                  use_approximate_cost(use_approximate_cost_),
                                                                  gjk_solver_type(gjk_solver_type_)
218
  {
219
220
    enable_cached_gjk_guess = false;
    cached_gjk_guess = Vec3f(1, 0, 0);
221
222
  }

223
  bool isSatisfied(const CollisionResult& result) const;
224
225
};

jpan's avatar
jpan committed
226
/// @brief collision result
227
228
struct CollisionResult
{
229
private:
jpan's avatar
jpan committed
230
  /// @brief contact information
231
  std::vector<Contact> contacts;
232

jpan's avatar
jpan committed
233
  /// @brief cost sources
234
235
  std::set<CostSource> cost_sources;

236
237
238
public:
  Vec3f cached_gjk_guess;

239
240
241
242
  /// Lower bound on distance between objects if they are disjoint
  /// \note computed only on request.
  FCL_REAL distance_lower_bound;

243
public:
jpan's avatar
   
jpan committed
244
245
  CollisionResult()
  {
246
247
  }

jpan's avatar
   
jpan committed
248

jpan's avatar
jpan committed
249
  /// @brief add one contact into result structure
jpan's avatar
   
jpan committed
250
251
252
253
254
  inline void addContact(const Contact& c) 
  {
    contacts.push_back(c);
  }

jpan's avatar
jpan committed
255
  /// @brief add one cost source into result structure
256
  inline void addCostSource(const CostSource& c, std::size_t num_max_cost_sources)
jpan's avatar
   
jpan committed
257
  {
258
    cost_sources.insert(c);
isucan's avatar
isucan committed
259
260
    while (cost_sources.size() > num_max_cost_sources)
      cost_sources.erase(--cost_sources.end());
jpan's avatar
   
jpan committed
261
262
  }

jpan's avatar
jpan committed
263
  /// @brief return binary collision result
jpan's avatar
   
jpan committed
264
265
266
267
268
  bool isCollision() const
  {
    return contacts.size() > 0;
  }

jpan's avatar
jpan committed
269
  /// @brief number of contacts found
jpan's avatar
   
jpan committed
270
271
272
273
  size_t numContacts() const
  {
    return contacts.size();
  }
274

jpan's avatar
jpan committed
275
  /// @brief number of cost sources found
jpan's avatar
   
jpan committed
276
  size_t numCostSources() const
277
  {
jpan's avatar
   
jpan committed
278
    return cost_sources.size();
279
280
  }

jpan's avatar
jpan committed
281
  /// @brief get the i-th contact calculated
282
283
284
285
286
287
288
289
  const Contact& getContact(size_t i) const
  {
    if(i < contacts.size()) 
      return contacts[i];
    else
      return contacts.back();
  }

jpan's avatar
jpan committed
290
  /// @brief get all the contacts
291
292
293
294
295
296
  void getContacts(std::vector<Contact>& contacts_)
  {
    contacts_.resize(contacts.size());
    std::copy(contacts.begin(), contacts.end(), contacts_.begin());
  }

jpan's avatar
jpan committed
297
  /// @brief get all the cost sources 
298
299
300
301
302
303
  void getCostSources(std::vector<CostSource>& cost_sources_)
  {
    cost_sources_.resize(cost_sources.size());
    std::copy(cost_sources.begin(), cost_sources.end(), cost_sources_.begin());
  }

jpan's avatar
jpan committed
304
  /// @brief clear the results obtained
305
306
307
308
309
310
311
  void clear()
  {
    contacts.clear();
    cost_sources.clear();
  }
};

312

313
struct DistanceResult;
sachinc's avatar
sachinc committed
314

jpan's avatar
jpan committed
315
/// @brief request to the distance computation
316
317
struct DistanceRequest
{
jpan's avatar
jpan committed
318
  /// @brief whether to return the nearest points
319
  bool enable_nearest_points;
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
  /// @brief error threshold for approximate distance
  FCL_REAL rel_err; // relative error, between 0 and 1
  FCL_REAL abs_err; // absoluate error

  /// @brief narrow phase solver type
  GJKSolverType gjk_solver_type;



  DistanceRequest(bool enable_nearest_points_ = false,
                  FCL_REAL rel_err_ = 0.0,
                  FCL_REAL abs_err_ = 0.0,
                  GJKSolverType gjk_solver_type_ = GST_LIBCCD) : enable_nearest_points(enable_nearest_points_),
                                                                rel_err(rel_err_),
                                                                abs_err(abs_err_),
                                                                gjk_solver_type(gjk_solver_type_)
337
338
  {
  }
339
340

  bool isSatisfied(const DistanceResult& result) const;
341
342
};

343

jpan's avatar
jpan committed
344
/// @brief distance result
345
346
struct DistanceResult
{
347
348

public:
349

350
  /// @brief minimum distance between two objects. if two objects are in collision, min_distance <= 0.
351
352
  FCL_REAL min_distance;

jpan's avatar
jpan committed
353
  /// @brief nearest points
354
  Vec3f nearest_points[2];
355

jpan's avatar
jpan committed
356
  /// @brief collision object 1
357
  const CollisionGeometry* o1;
jpan's avatar
jpan committed
358
359

  /// @brief collision object 2
360
  const CollisionGeometry* o2;
jpan's avatar
jpan committed
361
362
363
364
365

  /// @brief information about the nearest point in object 1
  /// if object 1 is mesh or point cloud, it is the triangle or point id
  /// if object 1 is geometry shape, it is NONE (-1),
  /// if object 1 is octree, it is the id of the cell
366
  int b1;
jpan's avatar
jpan committed
367
368
369
370
371

  /// @brief information about the nearest point in object 2
  /// if object 2 is mesh or point cloud, it is the triangle or point id
  /// if object 2 is geometry shape, it is NONE (-1),
  /// if object 2 is octree, it is the id of the cell
372
373
  int b2;

jpan's avatar
jpan committed
374
  /// @brief invalid contact primitive information
375
  static const int NONE = -1;
376
  
377
378
379
  DistanceResult(FCL_REAL min_distance_ = std::numeric_limits<FCL_REAL>::max()) : min_distance(min_distance_), 
                                                                                  o1(NULL),
                                                                                  o2(NULL),
jpan's avatar
jpan committed
380
381
                                                                                  b1(NONE),
                                                                                  b2(NONE)
382
  {
383
384
  }

385

jpan's avatar
jpan committed
386
  /// @brief add distance information into the result
387
388
389
390
391
392
393
394
395
396
397
398
  void update(FCL_REAL distance, const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_)
  {
    if(min_distance > distance)
    {
      min_distance = distance;
      o1 = o1_;
      o2 = o2_;
      b1 = b1_;
      b2 = b2_;
    }
  }

jpan's avatar
jpan committed
399
  /// @brief add distance information into the result
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  void update(FCL_REAL distance, const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_, const Vec3f& p1, const Vec3f& p2)
  {
    if(min_distance > distance)
    {
      min_distance = distance;
      o1 = o1_;
      o2 = o2_;
      b1 = b1_;
      b2 = b2_;
      nearest_points[0] = p1;
      nearest_points[1] = p2;
    }
  }

jpan's avatar
jpan committed
414
  /// @brief add distance information into the result
415
416
417
418
419
420
421
422
423
424
425
426
427
428
  void update(const DistanceResult& other_result)
  {
    if(min_distance > other_result.min_distance)
    {
      min_distance = other_result.min_distance;
      o1 = other_result.o1;
      o2 = other_result.o2;
      b1 = other_result.b1;
      b2 = other_result.b2;
      nearest_points[0] = other_result.nearest_points[0];
      nearest_points[1] = other_result.nearest_points[1];
    }
  }

jpan's avatar
jpan committed
429
  /// @brief clear the result
430
431
432
  void clear()
  {
    min_distance = std::numeric_limits<FCL_REAL>::max();
433
434
    o1 = NULL;
    o2 = NULL;
jpan's avatar
jpan committed
435
436
    b1 = NONE;
    b2 = NONE;
437
  }
sachinc's avatar
sachinc committed
438
439
};

jpan's avatar
jpan committed
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
enum CCDMotionType {CCDM_TRANS, CCDM_LINEAR, CCDM_SCREW, CCDM_SPLINE};
enum CCDSolverType {CCDC_NAIVE, CCDC_CONSERVATIVE_ADVANCEMENT, CCDC_RAY_SHOOTING, CCDC_POLYNOMIAL_SOLVER};


struct ContinuousCollisionRequest
{
  /// @brief maximum num of iterations
  std::size_t num_max_iterations;

  /// @brief error in first contact time
  FCL_REAL toc_err;

  /// @brief ccd motion type
  CCDMotionType ccd_motion_type;

  /// @brief gjk solver type
  GJKSolverType gjk_solver_type;

  /// @brief ccd solver type
  CCDSolverType ccd_solver_type;
  
  ContinuousCollisionRequest(std::size_t num_max_iterations_ = 10,
panjia1983's avatar
panjia1983 committed
463
                             FCL_REAL toc_err_ = 0.0001,
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                             CCDMotionType ccd_motion_type_ = CCDM_TRANS,
                             GJKSolverType gjk_solver_type_ = GST_LIBCCD,
                             CCDSolverType ccd_solver_type_ = CCDC_NAIVE) : num_max_iterations(num_max_iterations_),
                                                                            toc_err(toc_err_),
                                                                            ccd_motion_type(ccd_motion_type_),
                                                                            gjk_solver_type(gjk_solver_type_),
                                                                            ccd_solver_type(ccd_solver_type_)
  {
  }
  
};
/// @brief continuous collision result
struct ContinuousCollisionResult
{
  /// @brief collision or not
  bool is_collide;
  
  /// @brief time of contact in [0, 1]
  FCL_REAL time_of_contact;
panjia1983's avatar
panjia1983 committed
483
484

  Transform3f contact_tf1, contact_tf2;
485
486
487
488
489
490
491
  
  ContinuousCollisionResult() : is_collide(false), time_of_contact(1.0)
  {
  }
};


panjia1983's avatar
panjia1983 committed
492
enum PenetrationDepthType {PDT_TRANSLATIONAL, PDT_GENERAL_EULER, PDT_GENERAL_QUAT, PDT_GENERAL_EULER_BALL, PDT_GENERAL_QUAT_BALL};
493

panjia1983's avatar
panjia1983 committed
494
enum KNNSolverType {KNN_LINEAR, KNN_GNAT, KNN_SQRTAPPROX};
495
496
497
498


struct PenetrationDepthRequest
{
panjia1983's avatar
panjia1983 committed
499
500
501
502
503
504
505
  void* classifier;

  NearestNeighbors<Transform3f>::DistanceFunction distance_func;

  /// @brief KNN solver type
  KNNSolverType knn_solver_type;
  
506
507
508
509
510
511
  /// @brief PD algorithm type
  PenetrationDepthType pd_type;

  /// @brief gjk solver type
  GJKSolverType gjk_solver_type;

panjia1983's avatar
panjia1983 committed
512
513
514
515
516
517
518
519
520
521
  std::vector<Transform3f> contact_vectors;

  PenetrationDepthRequest(void* classifier_,
                          NearestNeighbors<Transform3f>::DistanceFunction distance_func_,
                          KNNSolverType knn_solver_type_ = KNN_LINEAR,
                          PenetrationDepthType pd_type_ = PDT_TRANSLATIONAL,
                          GJKSolverType gjk_solver_type_ = GST_LIBCCD) : classifier(classifier_),
                                                                         distance_func(distance_func_),
                                                                         knn_solver_type(knn_solver_type_),
                                                                         pd_type(pd_type_),
522
523
524
525
526
527
528
529
530
531
532
                                                                         gjk_solver_type(gjk_solver_type_)
  {
  }
};

struct PenetrationDepthResult
{
  /// @brief penetration depth value
  FCL_REAL pd_value;

  /// @brief the transform where the collision is resolved
panjia1983's avatar
panjia1983 committed
533
  Transform3f resolved_tf; 
534
535
536
};


sachinc's avatar
sachinc committed
537
538
539
540
541


}

#endif