Commit 12c13b23 authored by Pierre Fernbach's avatar Pierre Fernbach
Browse files

[script] add anymal scripts

parent e1d8b91a
from hpp.corbaserver.rbprm.anymal_contact6D import Robot
from hpp.gepetto import Viewer
from tools.display_tools import *
import time
print "Plan guide trajectory ..."
import anymal_flatGround_path as tp
print "Done."
import time
pId = tp.ps.numberPaths() -1
fullBody = Robot ()
# Set the bounds for the root, take slightly larger bounding box than during root planning
root_bounds = tp.root_bounds[::]
root_bounds[0] -= 0.2
root_bounds[1] += 0.2
root_bounds[2] -= 0.2
root_bounds[3] += 0.2
root_bounds[-1] = 0.5
root_bounds[-2] = 0.4
fullBody.setJointBounds ("root_joint", root_bounds)
# add the 6 extraDof for velocity and acceleration (see *_path.py script)
fullBody.client.robot.setDimensionExtraConfigSpace(tp.extraDof)
fullBody.client.robot.setExtraConfigSpaceBounds([-tp.vMax,tp.vMax,-tp.vMax,tp.vMax,0,0,-tp.aMax,tp.aMax,-tp.aMax,tp.aMax,0,0])
ps = tp.ProblemSolver( fullBody )
ps.setParameter("Kinodynamic/velocityBound",tp.vMax)
ps.setParameter("Kinodynamic/accelerationBound",tp.aMax)
#load the viewer
v = tp.Viewer (ps,viewerClient=tp.v.client, displayCoM = True)
# load a reference configuration
q_ref = fullBody.referenceConfig[::]+[0,0,0,0,0,0]
q_init = q_ref[::]
fullBody.setReferenceConfig(q_ref)
fullBody.setCurrentConfig (q_init)
print "Generate limb DB ..."
tStart = time.time()
fullBody.loadAllLimbs("static","ReferenceConfigurationCustom")
tGenerate = time.time() - tStart
print "Done."
print "Databases generated in : "+str(tGenerate)+" s"
fullBody.setReferenceConfig(q_ref)
#define initial and final configurations :
configSize = fullBody.getConfigSize() -fullBody.client.robot.getDimensionExtraConfigSpace()
q_init[0:7] = tp.ps.configAtParam(pId,0.01)[0:7] # use this to get the correct orientation
q_goal = q_init[::]; q_goal[0:7] = tp.ps.configAtParam(pId,tp.ps.pathLength(pId))[0:7]
dir_init = tp.ps.configAtParam(pId,0.01)[tp.indexECS:tp.indexECS+3]
acc_init = tp.ps.configAtParam(pId,0.01)[tp.indexECS+3:tp.indexECS+6]
dir_goal = tp.ps.configAtParam(pId,tp.ps.pathLength(pId)-0.01)[tp.indexECS:tp.indexECS+3]
acc_goal = [0,0,0]
robTreshold = 3
# copy extraconfig for start and init configurations
q_init[configSize:configSize+3] = dir_init[::]
q_init[configSize+3:configSize+6] = acc_init[::]
q_goal[configSize:configSize+3] = dir_goal[::]
q_goal[configSize+3:configSize+6] = [0,0,0]
q_init[2] = q_ref[2]
q_goal[2] = q_ref[2]
fullBody.setStaticStability(True)
fullBody.setCurrentConfig (q_init)
v(q_init)
fullBody.setCurrentConfig (q_goal)
v(q_goal)
v.addLandmark('anymal_reachability/base',0.3)
v(q_init)
# specify the full body configurations as start and goal state of the problem
fullBody.setStartState(q_init,fullBody.limbs_names)
fullBody.setEndState(q_goal,fullBody.limbs_names)
print "Generate contact plan ..."
tStart = time.time()
configs = fullBody.interpolate(0.01,pathId=pId,robustnessTreshold = robTreshold, filterStates = True,testReachability=True,quasiStatic=True)
tInterpolateConfigs = time.time() - tStart
print "Done. "
print "Contact sequence computed in "+str(tInterpolateConfigs)+" s."
print "number of configs :", len(configs)
#raw_input("Press Enter to display the contact sequence ...")
#displayContactSequence(v,configs)
from hpp.corbaserver.rbprm.anymal_abstract import Robot
from hpp.gepetto import Viewer
from hpp.corbaserver import Client
from hpp.corbaserver import ProblemSolver
import time
vMax = 0.3# linear velocity bound for the root
aMax = 1. # linear acceleration bound for the root
extraDof = 6
mu=0.5# coefficient of friction
# Creating an instance of the helper class, and loading the robot
rbprmBuilder = Robot()
# Define bounds for the root : bounding box of the scenario
root_bounds = [-3,3,-3,3, 0.4, 0.5]
rbprmBuilder.setJointBounds ("root_joint", root_bounds)
# The following lines set constraint on the valid configurations:
# a configuration is valid only if all limbs can create a contact with the corresponding afforcances type
rbprmBuilder.setFilter(rbprmBuilder.urdfNameRom)
for rom in rbprmBuilder.urdfNameRom :
rbprmBuilder.setAffordanceFilter(rom, ['Support'])
# We also bound the rotations of the torso. (z, y, x)
rbprmBuilder.boundSO3([-4.,4.,-0.1,0.1,-0.1,0.1])
# Add 6 extraDOF to the problem, used to store the linear velocity and acceleration of the root
rbprmBuilder.client.robot.setDimensionExtraConfigSpace(extraDof)
# We set the bounds of this extraDof with velocity and acceleration bounds (expect on z axis)
rbprmBuilder.client.robot.setExtraConfigSpaceBounds([-vMax,vMax,-vMax,vMax,0,0,-aMax,aMax,-aMax,aMax,0,0])
indexECS = rbprmBuilder.getConfigSize() - rbprmBuilder.client.robot.getDimensionExtraConfigSpace()
# Creating an instance of HPP problem solver
ps = ProblemSolver( rbprmBuilder )
# define parameters used by various methods :
ps.setParameter("Kinodynamic/velocityBound",vMax)
ps.setParameter("Kinodynamic/accelerationBound",aMax)
# force the orientation of the trunk to match the direction of the motion
ps.setParameter("Kinodynamic/forceOrientation",True)
ps.setParameter("DynamicPlanner/sizeFootX",0.01)
ps.setParameter("DynamicPlanner/sizeFootY",0.01)
ps.setParameter("DynamicPlanner/friction",mu)
# sample only configuration with null velocity and acceleration :
ps.setParameter("ConfigurationShooter/sampleExtraDOF",False)
ps.setParameter("PathOptimization/RandomShortcut/NumberOfLoops",100)
# initialize the viewer :
from hpp.gepetto import ViewerFactory
vf = ViewerFactory (ps)
# load the module to analyse the environnement and compute the possible contact surfaces
from hpp.corbaserver.affordance.affordance import AffordanceTool
afftool = AffordanceTool ()
afftool.setAffordanceConfig('Support', [0.5, 0.03, 0.00005])
afftool.loadObstacleModel ("hpp_environments", "multicontact/ground", "planning", vf)
v = vf.createViewer(displayArrows = True)
#afftool.visualiseAffordances('Support', v, v.color.lightBrown)
#v.addLandmark(v.sceneName,1)
# Setting initial configuration
q_init = rbprmBuilder.getCurrentConfig ();
q_init [0:3] = [0,0,0.444]
q_init[-6:-3] = [0,0,0]
v (q_init)
ps.setInitialConfig (q_init)
# set goal config
rbprmBuilder.setCurrentConfig (q_init)
q_goal = q_init [::]
q_goal[0:3] = [1.5,0,0.444]
q_goal[-6:-3] = [0,0,0]
v(q_goal)
ps.addGoalConfig (q_goal)
# Choosing RBPRM shooter and path validation methods.
ps.selectConfigurationShooter("RbprmShooter")
ps.addPathOptimizer ("RandomShortcutDynamic")
ps.selectPathValidation("RbprmPathValidation",0.05)
# Choosing kinodynamic methods :
ps.selectSteeringMethod("RBPRMKinodynamic")
ps.selectDistance("Kinodynamic")
ps.selectPathPlanner("DynamicPlanner")
# Solve the planning problem :
t = ps.solve ()
print "Guide planning time : ",t
# display solution :
from hpp.gepetto import PathPlayer
pp = PathPlayer (v)
pp.dt=0.1
#pp.displayVelocityPath(1)
#v.client.gui.setVisibility("path_1_root","ALWAYS_ON_TOP")
pp.dt = 0.01
#pp(1)
# move the robot out of the view before computing the contacts
q_far = q_init[::]
q_far[2] = -2
v(q_far)
from hpp.corbaserver.rbprm.anymal_contact6D import Robot
from hpp.gepetto import Viewer
from tools.display_tools import *
import time
print "Plan guide trajectory ..."
import anymal_slalom_debris_path as tp
print "Done."
import time
pId = tp.ps.numberPaths() -1
fullBody = Robot ()
# Set the bounds for the root, take slightly larger bounding box than during root planning
root_bounds = tp.root_bounds[::]
root_bounds[0] -= 0.2
root_bounds[1] += 0.2
root_bounds[2] -= 0.2
root_bounds[3] += 0.2
root_bounds[-1] = 0.8
root_bounds[-2] = 0.4
fullBody.setJointBounds ("root_joint", root_bounds)
# add the 6 extraDof for velocity and acceleration (see *_path.py script)
fullBody.client.robot.setDimensionExtraConfigSpace(tp.extraDof)
fullBody.client.robot.setExtraConfigSpaceBounds([-tp.vMax,tp.vMax,-tp.vMax,tp.vMax,0,0,-tp.aMax,tp.aMax,-tp.aMax,tp.aMax,-0,0])
ps = tp.ProblemSolver( fullBody )
ps.setParameter("Kinodynamic/velocityBound",tp.vMax)
ps.setParameter("Kinodynamic/accelerationBound",tp.aMax)
#load the viewer
v = tp.Viewer (ps,viewerClient=tp.v.client, displayCoM = True)
# load a reference configuration
q_ref = fullBody.referenceConfig[::]+[0,0,0,0,0,0]
q_init = q_ref[::]
fullBody.setReferenceConfig(q_ref)
fullBody.setCurrentConfig (q_init)
print "Generate limb DB ..."
tStart = time.time()
fullBody.loadAllLimbs("static","ReferenceConfigurationCustom",nbSamples=100000)
tGenerate = time.time() - tStart
print "Done."
print "Databases generated in : "+str(tGenerate)+" s"
fullBody.setReferenceConfig(q_ref)
#define initial and final configurations :
configSize = fullBody.getConfigSize() -fullBody.client.robot.getDimensionExtraConfigSpace()
q_init[0:7] = tp.ps.configAtParam(pId,0.01)[0:7] # use this to get the correct orientation
q_goal = q_init[::]; q_goal[0:7] = tp.ps.configAtParam(pId,tp.ps.pathLength(pId))[0:7]
dir_init = tp.ps.configAtParam(pId,0.01)[tp.indexECS:tp.indexECS+3]
acc_init = tp.ps.configAtParam(pId,0.01)[tp.indexECS+3:tp.indexECS+6]
dir_goal = tp.ps.configAtParam(pId,tp.ps.pathLength(pId)-0.01)[tp.indexECS:tp.indexECS+3]
acc_goal = [0,0,0]
robTreshold = 5
# copy extraconfig for start and init configurations
q_init[configSize:configSize+3] = dir_init[::]
q_init[configSize+3:configSize+6] = acc_init[::]
q_goal[configSize:configSize+3] = dir_goal[::]
q_goal[configSize+3:configSize+6] = [0,0,0]
q_init[2] = q_ref[2]
q_goal[2] = q_ref[2]
fullBody.setStaticStability(True)
fullBody.setCurrentConfig (q_init)
v(q_init)
fullBody.setCurrentConfig (q_goal)
v(q_goal)
v.addLandmark('anymal_reachability/base',0.3)
v(q_init)
# specify the full body configurations as start and goal state of the problem
fullBody.setStartState(q_init,fullBody.limbs_names)
fullBody.setEndState(q_goal,fullBody.limbs_names)
print "Generate contact plan ..."
tStart = time.time()
configs = fullBody.interpolate(0.01,pathId=pId,robustnessTreshold = robTreshold, filterStates = True,testReachability=True,quasiStatic=True)
tInterpolateConfigs = time.time() - tStart
print "Done. "
print "Contact sequence computed in "+str(tInterpolateConfigs)+" s."
print "number of configs :", len(configs)
#raw_input("Press Enter to display the contact sequence ...")
#v.startCapture("capture_cs/capture","png")
#displayContactSequence(v,configs)
#v.stopCapture()
from hpp.corbaserver.rbprm.anymal_abstract import Robot
from hpp.gepetto import Viewer
from hpp.corbaserver import Client
from hpp.corbaserver import ProblemSolver
import time
vMax = 0.2# linear velocity bound for the root
aMax = 0.1 # linear acceleration bound for the root
extraDof = 6
mu=0.5# coefficient of friction
# Creating an instance of the helper class, and loading the robot
rbprmBuilder = Robot()
# Define bounds for the root : bounding box of the scenario
root_bounds = [-1.7,2.5, -0.2, 2, 0.444, 0.444]
rbprmBuilder.setJointBounds ("root_joint", root_bounds)
# The following lines set constraint on the valid configurations:
# a configuration is valid only if all limbs can create a contact with the corresponding afforcances type
rbprmBuilder.setFilter(rbprmBuilder.urdfNameRom)
for rom in rbprmBuilder.urdfNameRom :
rbprmBuilder.setAffordanceFilter(rom, ['Support'])
# We also bound the rotations of the torso. (z, y, x)
rbprmBuilder.boundSO3([-4,4,-0.1,0.1,-0.1,0.1])
# Add 6 extraDOF to the problem, used to store the linear velocity and acceleration of the root
rbprmBuilder.client.robot.setDimensionExtraConfigSpace(extraDof)
# We set the bounds of this extraDof with velocity and acceleration bounds (expect on z axis)
rbprmBuilder.client.robot.setExtraConfigSpaceBounds([-vMax,vMax,-vMax,vMax,0,0,-aMax,aMax,-aMax,aMax,0,0])
indexECS = rbprmBuilder.getConfigSize() - rbprmBuilder.client.robot.getDimensionExtraConfigSpace()
# Creating an instance of HPP problem solver
ps = ProblemSolver( rbprmBuilder )
# define parameters used by various methods :
ps.setParameter("Kinodynamic/velocityBound",vMax)
ps.setParameter("Kinodynamic/accelerationBound",aMax)
# force the orientation of the trunk to match the direction of the motion
ps.setParameter("Kinodynamic/forceOrientation",True)
ps.setParameter("DynamicPlanner/sizeFootX",0.01)
ps.setParameter("DynamicPlanner/sizeFootY",0.01)
ps.setParameter("DynamicPlanner/friction",mu)
# sample only configuration with null velocity and acceleration :
ps.setParameter("ConfigurationShooter/sampleExtraDOF",False)
ps.setParameter("PathOptimization/RandomShortcut/NumberOfLoops",100)
# initialize the viewer :
from hpp.gepetto import ViewerFactory
vf = ViewerFactory (ps)
# load the module to analyse the environnement and compute the possible contact surfaces
from hpp.corbaserver.affordance.affordance import AffordanceTool
afftool = AffordanceTool ()
afftool.setAffordanceConfig('Support', [0.5, 0.03, 0.00005])
afftool.loadObstacleModel ("hpp_environments", "multicontact/slalom_debris", "planning", vf,reduceSizes=[0.05,0,0])
v = vf.createViewer(displayArrows = True)
#afftool.visualiseAffordances('Support', v, v.color.lightBrown)
#v.addLandmark(v.sceneName,1)
# Setting initial configuration
q_init = rbprmBuilder.getCurrentConfig ();
q_init [0:3] = [-1.5,0,0.444]
q_init[-6:-3] = [0.05,0,0]
v (q_init)
ps.setInitialConfig (q_init)
# set goal config
rbprmBuilder.setCurrentConfig (q_init)
q_goal = q_init [::]
q_goal[0:3] = [2.2,0,0.444]
q_goal[-6:-3] = [0.05,0,0]
v(q_goal)
ps.addGoalConfig (q_goal)
# Choosing RBPRM shooter and path validation methods.
ps.selectConfigurationShooter("RbprmShooter")
ps.addPathOptimizer ("RandomShortcutDynamic")
ps.selectPathValidation("RbprmPathValidation",0.05)
# Choosing kinodynamic methods :
ps.selectSteeringMethod("RBPRMKinodynamic")
ps.selectDistance("Kinodynamic")
ps.selectPathPlanner("DynamicPlanner")
# Solve the planning problem :
t = ps.solve ()
#v.solveAndDisplay('rm',2,radiusSphere=0.01)
print "Guide planning time : ",t
# display solution :
from hpp.gepetto import PathPlayer
pp = PathPlayer (v)
pp.dt=0.1
#pp.displayVelocityPath(1)
#v.client.gui.setVisibility("path_1_root","ALWAYS_ON_TOP")
pp.dt = 0.01
#v.startCapture("capture_root/capture","png")
#pp(1)
#v.stopCapture()
# move the robot out of the view before computing the contacts
q_far = q_init[::]
q_far[2] = -2
v(q_far)
from hpp.corbaserver.rbprm.anymal_contact6D import Robot
from hpp.gepetto import Viewer
from tools.display_tools import *
import time
print "Plan guide trajectory ..."
import darpa_path as tp
print "Done."
import time
pId = tp.ps.numberPaths() -1
fullBody = Robot ()
# Set the bounds for the root, take slightly larger bounding box than during root planning
root_bounds = tp.root_bounds[::]
root_bounds[0] -= 0.2
root_bounds[1] += 0.2
root_bounds[2] -= 0.2
root_bounds[3] += 0.2
root_bounds[-1] = 0.9
root_bounds[-2] = 0.4
fullBody.setJointBounds ("root_joint", root_bounds)
# constraint the joints limits in a conservative manner.
# This is a 'hack' to help produce contact sequence requiring less torque
fullBody.setJointBounds("LF_KFE",[-1.5,0.])
fullBody.setJointBounds("RF_KFE",[-1.5,0.])
fullBody.setJointBounds("LH_KFE",[0.,1.5])
fullBody.setJointBounds("RH_KFE",[0.,1.5])
fullBody.setJointBounds("LH_HFE",[-2.35,0.])
fullBody.setJointBounds("RH_HFE",[-2.3,-0.1])
fullBody.setJointBounds("LF_HFE",[0.15,2.35])
fullBody.setJointBounds("RF_HFE",[0.3,2.35])
# add the 6 extraDof for velocity and acceleration (see *_path.py script)
fullBody.client.robot.setDimensionExtraConfigSpace(tp.extraDof)
fullBody.client.robot.setExtraConfigSpaceBounds([-tp.vMax,tp.vMax,-tp.vMax,tp.vMax,-tp.vMax,tp.vMax,-tp.aMax,tp.aMax,-tp.aMax,tp.aMax,-tp.aMaxZ,tp.aMaxZ])
ps = tp.ProblemSolver( fullBody )
ps.setParameter("Kinodynamic/velocityBound",tp.vMax)
ps.setParameter("Kinodynamic/accelerationBound",tp.aMax)
#load the viewer
v = tp.Viewer (ps,viewerClient=tp.v.client, displayCoM = True)
# load a reference configuration
q_ref = fullBody.referenceConfig[::]+[0,0,0,0,0,0]
q_init = q_ref[::]
fullBody.setReferenceConfig(q_ref)
fullBody.setCurrentConfig (q_init)
dict_heuristic = {fullBody.rLegId:"static", fullBody.lLegId:"static", fullBody.rArmId:"fixedStep04", fullBody.lArmId:"fixedStep04"}
print "Generate limb DB ..."
tStart = time.time()
fullBody.loadAllLimbs(dict_heuristic,"ReferenceConfigurationCustom",nbSamples=50000)
tGenerate = time.time() - tStart
print "Done."
print "Databases generated in : "+str(tGenerate)+" s"
fullBody.setReferenceConfig(q_ref)
#define initial and final configurations :
configSize = fullBody.getConfigSize() -fullBody.client.robot.getDimensionExtraConfigSpace()
q_init[0:7] = tp.ps.configAtParam(pId,0.01)[0:7] # use this to get the correct orientation
q_goal = q_init[::]; q_goal[0:7] = tp.ps.configAtParam(pId,tp.ps.pathLength(pId))[0:7]
dir_init = tp.ps.configAtParam(pId,0.01)[tp.indexECS:tp.indexECS+3]
acc_init = tp.ps.configAtParam(pId,0.01)[tp.indexECS+3:tp.indexECS+6]
dir_goal = tp.ps.configAtParam(pId,tp.ps.pathLength(pId)-0.01)[tp.indexECS:tp.indexECS+3]
acc_goal = [0,0,0]
robTreshold = 0
# copy extraconfig for start and init configurations
q_init[configSize:configSize+3] = dir_init[::]
q_init[configSize+3:configSize+6] = acc_init[::]
q_goal[configSize:configSize+3] = dir_goal[::]
q_goal[configSize+3:configSize+6] = [0,0,0]
q_init[2] = q_ref[2]
q_goal[2] = q_ref[2]
fullBody.setStaticStability(True)
fullBody.setCurrentConfig (q_init)
v(q_init)
fullBody.setCurrentConfig (q_goal)
v(q_goal)
v.addLandmark('anymal_reachability/base',0.3)
v(q_init)
# specify the full body configurations as start and goal state of the problem
fullBody.setStartState(q_init,fullBody.limbs_names)
fullBody.setEndState(q_goal,fullBody.limbs_names)
print "Generate contact plan ..."
tStart = time.time()
configs = fullBody.interpolate(0.01,pathId=pId,robustnessTreshold = robTreshold, filterStates = True,testReachability=True,quasiStatic=True)
tInterpolateConfigs = time.time() - tStart
print "Done. "
print "Contact sequence computed in "+str(tInterpolateConfigs)+" s."
print "number of configs :", len(configs)
raw_input("Press Enter to display the contact sequence ...")
displayContactSequence(v,configs)
import tools.createActionDRP as exp
from hpp.corbaserver.rbprm.anymal_abstract import Robot
from hpp.gepetto import Viewer
from hpp.corbaserver import Client
from hpp.corbaserver import ProblemSolver
import time
vMax = 0.3# linear velocity bound for the root
aMax = 1. # linear acceleration bound for the root
aMaxZ=5.
extraDof = 6
mu=0.5# coefficient of friction
# Creating an instance of the helper class, and loading the robot
rbprmBuilder = Robot()
# Define bounds for the root : bounding box of the scenario
root_bounds = [-1.5,2.,-0.01,0.01, 0.4, 1.]
rbprmBuilder.setJointBounds ("root_joint", root_bounds)
# The following lines set constraint on the valid configurations:
# a configuration is valid only if all limbs can create a contact with the corresponding afforcances type
rbprmBuilder.setFilter(rbprmBuilder.urdfNameRom)
for rom in rbprmBuilder.urdfNameRom :
rbprmBuilder.setAffordanceFilter(rom, ['Support'])
# We also bound the rotations of the torso. (z, y, x)
rbprmBuilder.boundSO3([-0.01,0.01,-0.3,0.3,-0.01,0.01])
# Add 6 extraDOF to the problem, used to store the linear velocity and acceleration of the root
rbprmBuilder.client.robot.setDimensionExtraConfigSpace(extraDof)
# We set the bounds of this extraDof with velocity and acceleration bounds (expect on z axis)
rbprmBuilder.client.robot.setExtraConfigSpaceBounds([-vMax,vMax,-vMax,vMax,-vMax,vMax,-aMax,aMax,-aMax,aMax,-aMaxZ,aMaxZ])
indexECS = rbprmBuilder.getConfigSize() - rbprmBuilder.client.robot.getDimensionExtraConfigSpace()
# Creating an instance of HPP problem solver
ps = ProblemSolver( rbprmBuilder )
# define parameters used by various methods :
ps.setParameter("Kinodynamic/velocityBound",vMax)
ps.setParameter("Kinodynamic/accelerationBound",aMax)
ps.setParameter("Kinodynamic/verticalAccelerationBound",aMaxZ)
# force the orientation of the trunk to match the direction of the motion
ps.setParameter("Kinodynamic/forceOrientation",False)
ps.setParameter("DynamicPlanner/sizeFootX",0.01)
ps.setParameter("DynamicPlanner/sizeFootY",0.01)
ps.setParameter("DynamicPlanner/friction",mu)
# sample only configuration with null velocity and acceleration :
ps.setParameter("ConfigurationShooter/sampleExtraDOF",False)
ps.setParameter("PathOptimization/RandomShortcut/NumberOfLoops",100)
# initialize the viewer :
from hpp.gepetto import ViewerFactory
vf = ViewerFactory (ps)
# load the module to analyse the environnement and compute the possible contact surfaces
from hpp.corbaserver.affordance.affordance import AffordanceTool
afftool = AffordanceTool ()
afftool.setAffordanceConfig('Support', [0.5, 0.03, 0.00005])
afftool.loadObstacleModel ("hpp_environments", "multicontact/darpa", "planning", vf,reduceSizes=[0.08,0,0])
v = vf.createViewer(displayArrows = True)
#afftool.visualiseAffordances('Support', v, v.color.lightBrown)
#v.addLandmark(1550243518,1)
# Setting initial configuration
q_init = rbprmBuilder.getCurrentConfig ();
q_init [0:3] = [-1.2,0,0.444]
q_init[-6:-3] = [0.02,0,0]
v (q_init)
ps.setInitialConfig (q_init)
# set goal config