From c9d5314ca82524d5aab0dffd75c40564262495b1 Mon Sep 17 00:00:00 2001 From: Guilhem Saurel <guilhem.saurel@laas.fr> Date: Wed, 25 Sep 2019 12:20:20 +0200 Subject: [PATCH] [Python] allow Python 3 & fix format --- python/test/binding_tests.py | 48 +-- python/test/compare_pin_inv_dyn.py | 528 ++++++++++++++++------------- 2 files changed, 313 insertions(+), 263 deletions(-) diff --git a/python/test/binding_tests.py b/python/test/binding_tests.py index 50f67f9..9a44f94 100644 --- a/python/test/binding_tests.py +++ b/python/test/binding_tests.py @@ -1,11 +1,12 @@ +import hpp_spline # noqa - necessary to register spline::bezier_curve import numpy as np -from hpp_centroidal_dynamics import * -from hpp_spline import * +from hpp_centroidal_dynamics import Equilibrium, EquilibriumAlgorithm, SolverLP from numpy import array, asmatrix, matrix -from hpp_bezier_com_traj import * +from hpp_bezier_com_traj import (SOLVER_QUADPROG, ConstraintFlag, Constraints, ContactData, ProblemData, + computeCOMTraj, zeroStepCapturability) -#testing constructors +# testing constructors eq = Equilibrium("test", 54., 4) eq = Equilibrium("test", 54., 4, SolverLP.SOLVER_LP_QPOASES) eq = Equilibrium("test", 54., 4, SolverLP.SOLVER_LP_QPOASES) @@ -13,26 +14,26 @@ eq = Equilibrium("test", 54., 4, SolverLP.SOLVER_LP_QPOASES, False) eq = Equilibrium("test", 54., 4, SolverLP.SOLVER_LP_QPOASES, False, 1) eq = Equilibrium("test", 54., 4, SolverLP.SOLVER_LP_QPOASES, True, 1, True) -#whether useWarmStart is enable (True by default) +# whether useWarmStart is enable (True by default) previous = eq.useWarmStart() -#enable warm start in solver (only for QPOases) +# enable warm start in solver (only for QPOases) eq.setUseWarmStart(False) assert (previous != eq.useWarmStart()) -#access solver name +# access solver name assert (eq.getName() == "test") z = array([0., 0., 1.]) P = asmatrix(array([array([x, y, 0]) for x in [-0.05, 0.05] for y in [-0.1, 0.1]])) N = asmatrix(array([z for _ in range(4)])) -#setting contact positions and normals, as well as friction coefficients +# setting contact positions and normals, as well as friction coefficients eq.setNewContacts(asmatrix(P), asmatrix(N), 0.3, EquilibriumAlgorithm.EQUILIBRIUM_ALGORITHM_PP) -#~ eq.setNewContacts(asmatrix(P),asmatrix(N),0.3,EquilibriumAlgorithm.EQUILIBRIUM_ALGORITHM_LP) +# eq.setNewContacts(asmatrix(P),asmatrix(N),0.3,EquilibriumAlgorithm.EQUILIBRIUM_ALGORITHM_LP) # setting up optimization problem c0 = matrix([0., 0., 1.]).T -#~ dc0 = matrix(np.random.uniform(-1, 1, size=3)); +# dc0 = matrix(np.random.uniform(-1, 1, size=3)); dc0 = matrix([0.1, 0., 0.]).T l0 = matrix([0., 0., 0.]).T T = 1.2 @@ -56,7 +57,7 @@ kin = 10 * np.ones(3) # # a = zeroStepCapturability(eq, c0, dc0, l0, True, T, tstep, Kin, matrix(kin)) -#testing contactData +# testing contactData cData = ContactData(Equilibrium("test", 54., 4)) ceq = cData.contactPhase_ ceq.setNewContacts(asmatrix(P), asmatrix(N), 0.3, EquilibriumAlgorithm.EQUILIBRIUM_ALGORITHM_PP) @@ -68,7 +69,7 @@ Id = matrix([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) excep = False try: cData.Kin_ -except RuntimeError, e: +except RuntimeError: excep = True assert excep, "[ERROR] No kin assigned should have raised exception" cData.setKinematicConstraints(Id, matrix([0., 0., 1.]).T) @@ -77,14 +78,14 @@ cData.Kin_ excep = False try: cData.setKinematicConstraints(Id, matrix([0., 0., 0., 1.]).T) -except RuntimeError, e: +except RuntimeError: excep = True assert excep, "[ERROR] Miss matching matrix and vector should raise an error" excep = False try: cData.Ang_ -except RuntimeError, e: +except RuntimeError: excep = True assert excep, "[ERROR] No Ang_ assigned should have raised exception" cData.setAngularConstraints(Id, matrix([0., 0., 1.]).T) @@ -93,11 +94,11 @@ cData.Ang_ excep = False try: cData.setAngularConstraints(Id, matrix([0., 0., 0., 1.]).T) -except RuntimeError, e: +except RuntimeError: excep = True assert excep, "[ERROR] Missmatching matrix and vector should raise an error" -#testing constraints +# testing constraints c = Constraints() old = c.constrainAcceleration_ c.constrainAcceleration_ = not old @@ -113,7 +114,7 @@ old = c.reduce_h_ c.reduce_h_ = .235 assert c.reduce_h_ != old -#testing problem data +# testing problem data c = ProblemData() nv = matrix([0., 0., 10.]).T @@ -159,23 +160,24 @@ def initContactData(pD): pD.c0_ = c0 pD.dc0_ = dc0 res = computeCOMTraj(pD, matrix([0.4, 0.4, 0.4]).T, 0.05) -#test glpk only if defined +# test glpk only if defined try: test = SOLVER_GLPK res = computeCOMTraj(pD, matrix([0.4, 0.4, 0.4]).T, 0.05, SOLVER_GLPK) -except NameError, e: - print "[WARNING] SOLVER_GLPK is not defined. Consider installing GLPK if you are using CROC with a force formulation" +except NameError: + print("[WARNING] SOLVER_GLPK is not defined.") + print("Consider installing GLPK if you are using CROC with a force formulation") res = computeCOMTraj(pD, matrix([0.4, 0.4, 0.4]).T, 0.05, SOLVER_QUADPROG) -#~ res = computeCOMTraj(pD,matrix([0.4,0.4,0.4]).T,0.05,SOLVER_QUADPROG_SPARSE) +# res = computeCOMTraj(pD,matrix([0.4,0.4,0.4]).T,0.05,SOLVER_QUADPROG_SPARSE) assert np.linalg.norm(res.c_of_t.derivate(1.2, 1)) < 0.00000001 # non matching time step and contact phases excep = False try: res = computeCOMTraj(pD, matrix([0.4, 0.4]).T, 0.05) -except RuntimeError, e: +except RuntimeError: excep = True assert excep, "[ERROR] computeCOMTraj should have raised exception" -print "all tests passed" +print("all tests passed") diff --git a/python/test/compare_pin_inv_dyn.py b/python/test/compare_pin_inv_dyn.py index 8841689..3d66b7f 100644 --- a/python/test/compare_pin_inv_dyn.py +++ b/python/test/compare_pin_inv_dyn.py @@ -5,175 +5,222 @@ Created on Thu Sep 1 16:54:39 2016 @author: stonneau """ -from pinocchio_inv_dyn.optimization.solver_LP_abstract import LP_status, LP_status_string -from pinocchio_inv_dyn.multi_contact.stability_criterion import Bunch -from pinocchio_inv_dyn.optimization.solver_LP_abstract import getNewSolver +from __future__ import print_function -from spline import bezier, bezier6, polynom, bernstein - -from numpy import array, vstack, zeros, ones, sqrt, matrix, asmatrix, asarray, identity -from numpy import cross as X -from numpy.linalg import norm -import numpy as np from math import atan, pi -from centroidal_dynamics import * -from pinocchio_inv_dyn.multi_contact.utils import generate_contacts, compute_GIWC, find_static_equilibrium_com, can_I_stop, check_static_eq -import cProfile - - -from pinocchio_inv_dyn.multi_contact.bezier.bezier_0_step_capturability import BezierZeroStepCapturability ,compute_CWC +import numpy as np +from numpy import array, asarray, asmatrix +from numpy import cross as X +from numpy import matrix, zeros -from bezier_com_traj import * +from centroidal_dynamics import Equilibrium, EquilibriumAlgorithm +from pinocchio_inv_dyn.multi_contact.bezier.bezier_0_step_capturability import (BezierZeroStepCapturability, + compute_CWC) +from pinocchio_inv_dyn.multi_contact.utils import (check_static_eq, find_static_equilibrium_com, generate_contacts) +from spline import bezier -__EPS = 1e-5; -np.set_printoptions(precision=2, suppress=True, linewidth=100); +__EPS = 1e-5 +np.set_printoptions(precision=2, suppress=True, linewidth=100) ##################### # EQUILIBRIUM CHECK # ##################### -def compute_w(c, ddc, dL=array([0.,0.,0.]), m = 54., g_vec=array([0.,0.,-9.81])): +def compute_w(c, ddc, dL=array([0., 0., 0.]), m=54., g_vec=array([0., 0., -9.81])): w1 = m * (ddc - g_vec) return array(w1.tolist() + (X(c, w1) + dL).tolist()) -def is_stable(H,c=array([0.,0.,0.]), ddc=array([0.,0.,0.]), dL=array([0.,0.,0.]), m = 54., g_vec=array([0.,0.,-9.81]), robustness = 0.): - w = compute_w(c, ddc, dL, m, g_vec) + +def is_stable(H, + c=array([0., 0., 0.]), + ddc=array([0., 0., 0.]), + dL=array([0., 0., 0.]), + m=54., + g_vec=array([0., 0., -9.81]), + robustness=0.): + w = compute_w(c, ddc, dL, m, g_vec) res = np.max(H.dot(w)) - if(res > -robustness): - print "offset ", res, dL - w = compute_w(c, ddc, array([0.,0.,0.]), m, g_vec) - print "offset2 ", np.max(H.dot(w)) - return res<=-robustness + if res > -robustness: + print("offset ", res, dL) + w = compute_w(c, ddc, array([0., 0., 0.]), m, g_vec) + print("offset2 ", np.max(H.dot(w))) + return res <= -robustness + def allZeros(t): return zeros(3) -def __check_trajectory(p0,p1,p2,p3,T,H, mass, g, time_step = 0.1, dL = allZeros): - robustness = -0.000001 - if(time_step < 0): + +def __check_trajectory(p0, p1, p2, p3, T, H, mass, g, time_step=0.1, dL=allZeros): + if time_step < 0: time_step = 0.01 - robustness = -0.01 resolution = int(T / time_step) - wps = [p0,p1,p2,p3]; wps = matrix([pi.tolist() for pi in wps]).transpose() + wps = [p0, p1, p2, p3] + wps = matrix([pi.tolist() for pi in wps]).transpose() c_t = bezier(wps) ddc_t = c_t.compute_derivate(2) + def c_tT(t): - return asarray(c_t(t/T)).flatten() + return asarray(c_t(t / T)).flatten() + def ddc_tT(t): - return 1./(T*T) * asarray(ddc_t(t/T)).flatten() + return 1. / (T * T) * asarray(ddc_t(t / T)).flatten() + def dL_tT(t): - return 1./(T) * asarray(dL(t/T)).flatten() + return 1. / (T) * asarray(dL(t / T)).flatten() + for i in range(resolution): t = T * float(i) / float(resolution) - if not (is_stable(H,c=c_tT(t), ddc=ddc_tT(t), dL=dL_tT(t), m = mass, g_vec=g, robustness = -0.00001)): + if not (is_stable(H, c=c_tT(t), ddc=ddc_tT(t), dL=dL_tT(t), m=mass, g_vec=g, robustness=-0.00001)): if t > 0.1: raise ValueError("trajectory is not stale ! at ", t) else: - print is_stable(H,c=c_tT(t), ddc=ddc_tT(t), dL=asarray(dL(t/T)).flatten(), m = mass, g_vec=g, robustness = -0.00001) - print "failed at 0" + print( + is_stable(H, + c=c_tT(t), + ddc=ddc_tT(t), + dL=asarray(dL(t / T)).flatten(), + m=mass, + g_vec=g, + robustness=-0.00001)) + print("failed at 0") + ################### # LP BEZIER TESTS # ################### - -def test_continuous_cpp_vs_continuous_py(N_CONTACTS = 2, solver='qpoases', verb=0): - - DO_PLOTS = False; - PLOT_3D = False; - mu = 0.5; # friction coefficient - lx = 0.1; # half foot size in x direction - ly = 0.07; # half foot size in y direction - #First, generate a contact configuration - CONTACT_POINT_UPPER_BOUNDS = [ 0.5, 0.5, 0.5]; - CONTACT_POINT_LOWER_BOUNDS = [-0.5, -0.5, 0.0]; - gamma = atan(mu); # half friction cone angle - RPY_LOWER_BOUNDS = [-2*gamma, -2*gamma, -pi]; - RPY_UPPER_BOUNDS = [+2*gamma, +2*gamma, +pi]; - MIN_CONTACT_DISTANCE = 0.3; + + +def test_continuous_cpp_vs_continuous_py(N_CONTACTS=2, solver='qpoases', verb=0): + + mu = 0.5 + # friction coefficient + lx = 0.1 + # half foot size in x direction + ly = 0.07 + # half foot size in y direction + # First, generate a contact configuration + CONTACT_POINT_UPPER_BOUNDS = [0.5, 0.5, 0.5] + CONTACT_POINT_LOWER_BOUNDS = [-0.5, -0.5, 0.0] + gamma = atan(mu) + # half friction cone angle + RPY_LOWER_BOUNDS = [-2 * gamma, -2 * gamma, -pi] + RPY_UPPER_BOUNDS = [+2 * gamma, +2 * gamma, +pi] + MIN_CONTACT_DISTANCE = 0.3 global mass global g_vector - X_MARG = 0.07; - Y_MARG = 0.07; - - succeeded = False; - while(not succeeded): - (p, N) = generate_contacts(N_CONTACTS, lx, ly, mu, CONTACT_POINT_LOWER_BOUNDS, CONTACT_POINT_UPPER_BOUNDS, - RPY_LOWER_BOUNDS, RPY_UPPER_BOUNDS, MIN_CONTACT_DISTANCE, False); - X_LB = np.min(p[:,0]-X_MARG); - X_UB = np.max(p[:,0]+X_MARG); - Y_LB = np.min(p[:,1]-Y_MARG); - Y_UB = np.max(p[:,1]+Y_MARG); - Z_LB = np.max(p[:,2]+0.3); - Z_UB = np.max(p[:,2]+1.5); - #~ (H,h) = compute_GIWC(p, N, mu, False); - H = -compute_CWC(p, N, mass, mu); h = zeros(H.shape[0]) - (succeeded, c0) = find_static_equilibrium_com(mass, [X_LB, Y_LB, Z_LB], [X_UB, Y_UB, Z_UB], H, h); - - dc0 = np.random.uniform(-1, 1, size=3); - - Z_MIN = np.max(p[:,2])-0.1; - Ineq_kin = zeros([3,3]); Ineq_kin[2,2] = -1 - ineq_kin = zeros(3); ineq_kin[2] = -Z_MIN - - - bezierSolver = BezierZeroStepCapturability("ss", c0, dc0, p, N, mu, g_vector, mass, verb=verb, solver=solver, kinematic_constraints = [Ineq_kin,ineq_kin ]); - eqCpp = Equilibrium("dyn_eq2", mass, 4) - eqCpp.setNewContacts(asmatrix(p),asmatrix(N),mu,EquilibriumAlgorithm.EQUILIBRIUM_ALGORITHM_PP) - #~ bezierSolver = BezierZeroStepCapturability("ss", c0, dc0, p, N, mu, g_vector, mass, verb=verb, solver=solver, kinematic_constraints = None); - #~ stabilitySolver = StabilityCriterion("ss", c0, dc0, p, N, mu, g_vector, mass, verb=verb, solver=solver); - window_times = [1]+ [0.1*i for i in range(1,10)] + [0.1*i for i in range(11,21)] #try nominal time first - #~ window_times = [0.2*i for i in range(1,5)] + [0.2*i for i in range(6,11)] #try nominal time first - #~ window_times = [1]+ [0.4*i for i in range(1,4)] #try nominal time first - #~ window_times = [1]+ [0.4*i for i in range(3,6)] #try nominal time first - #~ window_times = [0.7] + X_MARG = 0.07 + Y_MARG = 0.07 + + succeeded = False + while (not succeeded): + p, N = generate_contacts(N_CONTACTS, lx, ly, mu, CONTACT_POINT_LOWER_BOUNDS, CONTACT_POINT_UPPER_BOUNDS, + RPY_LOWER_BOUNDS, RPY_UPPER_BOUNDS, MIN_CONTACT_DISTANCE, False) + X_LB = np.min(p[:, 0] - X_MARG) + X_UB = np.max(p[:, 0] + X_MARG) + Y_LB = np.min(p[:, 1] - Y_MARG) + Y_UB = np.max(p[:, 1] + Y_MARG) + Z_LB = np.max(p[:, 2] + 0.3) + Z_UB = np.max(p[:, 2] + 1.5) + # (H,h) = compute_GIWC(p, N, mu, False); + H = -compute_CWC(p, N, mass, mu) + h = zeros(H.shape[0]) + (succeeded, c0) = find_static_equilibrium_com(mass, [X_LB, Y_LB, Z_LB], [X_UB, Y_UB, Z_UB], H, h) + + dc0 = np.random.uniform(-1, 1, size=3) + + Z_MIN = np.max(p[:, 2]) - 0.1 + Ineq_kin = zeros([3, 3]) + Ineq_kin[2, 2] = -1 + ineq_kin = zeros(3) + ineq_kin[2] = -Z_MIN + + bezierSolver = BezierZeroStepCapturability("ss", + c0, + dc0, + p, + N, + mu, + g_vector, + mass, + verb=verb, + solver=solver, + kinematic_constraints=[Ineq_kin, ineq_kin]) + eqCpp = Equilibrium("dyn_eq2", mass, 4) + eqCpp.setNewContacts(asmatrix(p), asmatrix(N), mu, EquilibriumAlgorithm.EQUILIBRIUM_ALGORITHM_PP) + # bezierSolver = BezierZeroStepCapturability("ss", c0, dc0, p, N, mu, g_vector, mass, verb=verb, solver=solver, + # kinematic_constraints = None); + # stabilitySolver = StabilityCriterion("ss", c0, dc0, p, N, mu, g_vector, mass, verb=verb, solver=solver); + window_times = [1] + [0.1 * i for i in range(1, 10)] + [0.1 * i for i in range(11, 21)] # try nominal time first + # window_times = [0.2*i for i in range(1,5)] + [0.2*i for i in range(6,11)] #try nominal time first + # window_times = [1]+ [0.4*i for i in range(1,4)] #try nominal time first + # window_times = [1]+ [0.4*i for i in range(3,6)] #try nominal time first + # window_times = [0.7] found = False time_step_check = -0.2 for i, el in enumerate(window_times): if (found): break - res = bezierSolver.can_I_stop(T=el, time_step = time_step_check); + res = bezierSolver.can_I_stop(T=el, time_step=time_step_check) if (res.is_stable): found = True - #~ print "continuous found at ", el - __check_trajectory(bezierSolver._p0, bezierSolver._p1, res.c, res.c, el, bezierSolver._H, - bezierSolver._mass, bezierSolver._g, time_step = time_step_check, dL = bezier(matrix([p_i.tolist() for p_i in res.wpsdL]).transpose())) + # print("continuous found at ", el) + __check_trajectory(bezierSolver._p0, + bezierSolver._p1, + res.c, + res.c, + el, + bezierSolver._H, + bezierSolver._mass, + bezierSolver._g, + time_step=time_step_check, + dL=bezier(matrix([p_i.tolist() for p_i in res.wpsdL]).transpose())) if i != 0: - print "continuous Failed to stop at 1, but managed to stop at ", el - + print("continuous Failed to stop at 1, but managed to stop at ", el) + found = False time_step_check = 0.05 for i, el in enumerate(window_times): if (found): break - res2 = bezierSolver.can_I_stop(T=el, time_step = time_step_check, l0 = zeros(3)); + res2 = bezierSolver.can_I_stop(T=el, time_step=time_step_check, l0=zeros(3)) if (res2.is_stable): found = True - #~ print "ang_momentum found at ", el - __check_trajectory(bezierSolver._p0, bezierSolver._p1, res2.c, res2.c, el, bezierSolver._H, - #~ bezierSolver._mass, bezierSolver._g, time_step = time_step_check, dL = res2.dL_of_t) - bezierSolver._mass, bezierSolver._g, time_step = time_step_check, dL = bezier(matrix([p_i.tolist() for p_i in res2.wpsdL]).transpose())) + # print("ang_momentum found at ", el) + __check_trajectory( + bezierSolver._p0, + bezierSolver._p1, + res2.c, + res2.c, + el, + bezierSolver._H, + # bezierSolver._mass, bezierSolver._g, time_step = time_step_check, dL = res2.dL_of_t) + bezierSolver._mass, + bezierSolver._g, + time_step=time_step_check, + dL=bezier(matrix([p_i.tolist() for p_i in res2.wpsdL]).transpose())) if i != 0: - print "ang_momentum Failed to stop at 1, but managed to stop at ", el - #~ res2 = None - #~ try: - #~ res2 = stabilitySolver.can_I_stop(); - #~ except Exception as e: - #~ pass - - if(res2.is_stable != res.is_stable ): - if(res.is_stable): - print "continuous won" - else: - print "ang_momentum won" - + print("ang_momentum Failed to stop at 1, but managed to stop at ", el) + # res2 = None + # try: + # res2 = stabilitySolver.can_I_stop(); + # except Exception as e: + # pass + + if (res2.is_stable != res.is_stable): + if (res.is_stable): + print("continuous won") + else: + print("ang_momentum won") + return res2.is_stable, res.is_stable, res2, res, c0, dc0, H, h, p, N -if __name__=="__main__": - g_vector = np.array([0., 0., -9.81]); - mass = 75; # mass of the robot - from pinocchio_inv_dyn.multi_contact.stability_criterion import StabilityCriterion +if __name__ == "__main__": + g_vector = np.array([0., 0., -9.81]) + mass = 75 + # mass of the robot from matplotlib import rcParams rcParams.update({'font.size': 11}) mine_won = 0 @@ -181,161 +228,162 @@ if __name__=="__main__": total_stop = 0 total_not_stop = 0 total_disagree = 0 - margin_i_win_he_lose = [] # remaining speed - margin_he_wins_i_lost = [] # remaining acceleration + margin_i_win_he_lose = [] # remaining speed + margin_he_wins_i_lost = [] # remaining acceleration curves_when_i_win = [] - #~ times_disagree = [] - #~ times_agree_stop = [] - - from mpl_toolkits.mplot3d import Axes3D + # times_disagree = [] + # times_agree_stop = [] + import matplotlib.pyplot as plt - from matplotlib import cm - - def __plot_3d_points(ax, points, c = 'b'): + + def __plot_3d_points(ax, points, c='b'): xs = [point[0] for point in points] ys = [point[1] for point in points] zs = [point[2] for point in points] - ax.scatter(xs[:1], ys[:1], zs[:1], c='r') - ax.scatter(xs[1:-1], ys[1:-1], zs[1:-1], c=c) - ax.scatter(xs[-1:], ys[-1:], zs[-1:], c='g') - ax.set_xlabel('X Label', fontsize = 11) - ax.set_ylabel('Y Label', fontsize = 11) - ax.set_zlabel('Z Label', fontsize = 11) - - from pinocchio_inv_dyn.geom_utils import is_vector_inside_cone, plot_inequalities - def plot_support_polygon(H,h,p,N,ax, c0): - from pinocchio_inv_dyn.multi_contact.utils import generate_contacts, find_static_equilibrium_com, compute_GIWC, compute_support_polygon - #~ (H,h) = compute_GIWC(p, N, mu); + ax.scatter(xs[:1], ys[:1], zs[:1], c='r') + ax.scatter(xs[1:-1], ys[1:-1], zs[1:-1], c=c) + ax.scatter(xs[-1:], ys[-1:], zs[-1:], c='g') + ax.set_xlabel('X Label', fontsize=11) + ax.set_ylabel('Y Label', fontsize=11) + ax.set_zlabel('Z Label', fontsize=11) + + def plot_support_polygon(H, h, p, N, ax, c0): + from pinocchio_inv_dyn.multi_contact.utils import compute_support_polygon + # (H,h) = compute_GIWC(p, N, mu); global mass global g_vector - (B_sp, b_sp) = compute_support_polygon(H, h, mass, g_vector, eliminate_redundancies=False); - X_MIN = np.min(p[:,0]); - X_MAX = np.max(p[:,0]); - X_MIN -= 0.5*(X_MAX-X_MIN); - X_MAX += 0.5*(X_MAX-X_MIN); - Y_MIN = np.min(p[:,1]); - Y_MAX = np.max(p[:,1]); - Y_MIN -= 0.5*(Y_MAX-Y_MIN); - Y_MAX += 0.5*(Y_MAX-Y_MIN); + (B_sp, b_sp) = compute_support_polygon(H, h, mass, g_vector, eliminate_redundancies=False) + X_MIN = np.min(p[:, 0]) + X_MAX = np.max(p[:, 0]) + X_MIN -= 0.5 * (X_MAX - X_MIN) + X_MAX += 0.5 * (X_MAX - X_MIN) + Y_MIN = np.min(p[:, 1]) + Y_MAX = np.max(p[:, 1]) + Y_MIN -= 0.5 * (Y_MAX - Y_MIN) + Y_MAX += 0.5 * (Y_MAX - Y_MIN) num_steps = 50 dx = (X_MAX - X_MIN) / float(num_steps) dy = (Y_MAX - Y_MIN) / float(num_steps) - #~ points = [(X_MIN + dx * i, Y_MAX + dy * j, 0.) for i in range(num_steps+1) for j in range(num_steps+1) if check_static_eq(H, h, mass, array([X_MIN + dx * i, Y_MAX + dy * j,0.]), g_vector) ] - #~ points = [c0]+[[X_MIN + dx * i, Y_MIN + dy * j, -0.5] for i in range(num_steps+1) for j in range(num_steps+1) if check_static_eq(H, h, mass, [X_MIN + dx * i, Y_MAX + dy * j,0.], g_vector)] - points = [c0]+[[X_MIN + dx * i, Y_MIN + dy * j, 0] for i in range(num_steps+1) for j in range(num_steps+1) ] - pts2 = [] + # points = [(X_MIN + dx * i, Y_MAX + dy * j, 0.) for i in range(num_steps+1) for j in range(num_steps+1) if + # check_static_eq(H, h, mass, array([X_MIN + dx * i, Y_MAX + dy * j,0.]), g_vector) ] + # points = [c0]+[[X_MIN + dx * i, Y_MIN + dy * j, -0.5] for i in range(num_steps+1) for j in + # range(num_steps+1) if check_static_eq(H, h, mass, [X_MIN + dx * i, Y_MAX + dy * j,0.], g_vector)] + points = [c0] + [[X_MIN + dx * i, Y_MIN + dy * j, 0] for i in range(num_steps + 1) + for j in range(num_steps + 1)] + pts2 = [] for pt in points: if check_static_eq(H, h, mass, pt, g_vector): pts2 += [pt] - __plot_3d_points(ax, pts2, c="r") - #~ __plot_3d_points(ax, points2, c="r") - __plot_3d_points(ax, p, c="r") - #~ for i in range(num_steps): - #~ for j in range(num_steps): - #~ plot_inequalities(B_sp, b_sp, [X_MIN,X_MAX], [Y_MIN,Y_MAX], ax=ax, color='b', lw=4, is_3d=False); - #~ plot_inequalities(B_sp, b_sp, [X_MIN,X_MAX], [Y_MIN,Y_MAX], ax=ax, color='b', lw=4, is_3d=False); - #~ plt.show(); - - def plot_win_curve(n = -1, num_pts = 20): + __plot_3d_points(ax, pts2, c="r") + # __plot_3d_points(ax, points2, c="r") + __plot_3d_points(ax, p, c="r") + # for i in range(num_steps): + # for j in range(num_steps): + # plot_inequalities(B_sp, b_sp, [X_MIN,X_MAX], [Y_MIN,Y_MAX], ax=ax, color='b', lw=4, is_3d=False); + # plot_inequalities(B_sp, b_sp, [X_MIN,X_MAX], [Y_MIN,Y_MAX], ax=ax, color='b', lw=4, is_3d=False); + # plt.show(); + + def plot_win_curve(n=-1, num_pts=20): global curves_when_i_win - if n > len(curves_when_i_win) -1 or n < 0: - print "n bigger than num curves or equal to -1, plotting last curve" - n = len(curves_when_i_win) -1 + if n > len(curves_when_i_win) - 1 or n < 0: + print("n bigger than num curves or equal to -1, plotting last curve") + n = len(curves_when_i_win) - 1 c0, dc0, c_end, dc_end, t_max, c_of_t, dc_of_t, ddc_of_t, H, h, p, N, dl_of_t, L_of_t = curves_when_i_win[n] - print "c0 ", c0 - print "Is c0 stable ? ", check_static_eq(H, h, mass, c0, g_vector) - print "Is end stable ? ", check_static_eq(H, h, mass, c_of_t(t_max), g_vector) - - w = np.zeros(6); - w[2] = -mass*9.81; - w[3:] = mass*np.cross(c_of_t(t_max), g_vector); - print 'max ', np.max(np.dot(H, w) - h) - - X_MIN = np.min(p[:,0]); - X_MAX = np.max(p[:,0]); - X_MIN -= 0.1*(X_MAX-X_MIN); - X_MAX += 0.1*(X_MAX-X_MIN); - Y_MIN = np.min(p[:,1]); - Y_MAX = np.max(p[:,1]); - print "Is XMIN ? ", X_MIN - print "Is XMAX ? ", X_MAX - print "Is YMIN ? ", Y_MIN - print "Is YMAX ? ", Y_MAX + print("c0 ", c0) + print("Is c0 stable ? ", check_static_eq(H, h, mass, c0, g_vector)) + print("Is end stable ? ", check_static_eq(H, h, mass, c_of_t(t_max), g_vector)) + + w = np.zeros(6) + w[2] = -mass * 9.81 + w[3:] = mass * np.cross(c_of_t(t_max), g_vector) + print('max ', np.max(np.dot(H, w) - h)) + + X_MIN = np.min(p[:, 0]) + X_MAX = np.max(p[:, 0]) + X_MIN -= 0.1 * (X_MAX - X_MIN) + X_MAX += 0.1 * (X_MAX - X_MIN) + Y_MIN = np.min(p[:, 1]) + Y_MAX = np.max(p[:, 1]) + print("Is XMIN ? ", X_MIN) + print("Is XMAX ? ", X_MAX) + print("Is YMIN ? ", Y_MIN) + print("Is YMAX ? ", Y_MAX) delta = t_max / float(num_pts) - num_pts +=1; - fig = plt.figure() + num_pts += 1 + fig = plt.figure() ax = fig.add_subplot(221, projection='3d') - #~ ax = fig.add_subplot(221) + # ax = fig.add_subplot(221) __plot_3d_points(ax, [c_of_t(i * delta) for i in range(num_pts)]) - __plot_3d_points(ax, [c0 + (c_end-c0)* i * delta for i in range(num_pts)], c = "y") - plot_support_polygon(H,h,p,N,ax, c0) + __plot_3d_points(ax, [c0 + (c_end - c0) * i * delta for i in range(num_pts)], c="y") + plot_support_polygon(H, h, p, N, ax, c0) ax = fig.add_subplot(222, projection='3d') - __plot_3d_points(ax, [dc_of_t(i * delta) for i in range(num_pts)]) - __plot_3d_points(ax, [dc0 + (dc_end-dc0)* i * delta for i in range(num_pts)], c = "y") + __plot_3d_points(ax, [dc_of_t(i * delta) for i in range(num_pts)]) + __plot_3d_points(ax, [dc0 + (dc_end - dc0) * i * delta for i in range(num_pts)], c="y") ax = fig.add_subplot(223, projection='3d') - #~ __plot_3d_points(ax, [ddc_of_t(i * delta) for i in range(num_pts)]) - #~ ax = fig.add_subplot(224, projection='3d') - __plot_3d_points(ax, [L_of_t(i * delta) for i in range(num_pts)], c = "y") - #~ __plot_3d_points(ax, [-dc0* i * delta for i in range(num_pts)], c = "y") + # __plot_3d_points(ax, [ddc_of_t(i * delta) for i in range(num_pts)]) + # ax = fig.add_subplot(224, projection='3d') + __plot_3d_points(ax, [L_of_t(i * delta) for i in range(num_pts)], c="y") + # __plot_3d_points(ax, [-dc0* i * delta for i in range(num_pts)], c = "y") ax = fig.add_subplot(224, projection='3d') __plot_3d_points(ax, [dl_of_t(i * delta) for i in range(num_pts)]) - #~ ax = fig.add_subplot(121, projection='3d') - #~ __plot_3d_points(ax, [ddc_of_t(i * delta) for i in range(num_pts)]) - #~ ax = fig.add_subplot(122, projection='3d') - #~ __plot_3d_points(ax, [-dc0* i * delta for i in range(num_pts)]) - #~ print "cross product ", X(-dc0,ddc_of_t(0.5) - ddc_of_t(0) ) / norm(X(-dc0,ddc_of_t(0.5) - ddc_of_t(0) )) - #~ print "init acceleration ", ddc_of_t(0) - print "init velocity ", dc_of_t(0) - print "end velocity ", dc_of_t(t_max) - #~ print "cross product ", X(-dc0,ddc_of_t(t_max) - ddc_of_t(0) ) / norm(X(-dc0,ddc_of_t(t_max) - ddc_of_t(0) )) - - #~ plt.show() - - def plot_n_win_curves(n = -1, num_pts = 50): + # ax = fig.add_subplot(121, projection='3d') + # __plot_3d_points(ax, [ddc_of_t(i * delta) for i in range(num_pts)]) + # ax = fig.add_subplot(122, projection='3d') + # __plot_3d_points(ax, [-dc0* i * delta for i in range(num_pts)]) + # print("cross product ", X(-dc0,ddc_of_t(0.5) - ddc_of_t(0) ) / norm(X(-dc0,ddc_of_t(0.5) - ddc_of_t(0) ))) + # print("init acceleration ", ddc_of_t(0)) + print("init velocity ", dc_of_t(0)) + print("end velocity ", dc_of_t(t_max)) + # print("cross product ", X(-dc0,ddc_of_t(t_max) - ddc_of_t(0) ) / norm(X(-dc0,ddc_of_t(t_max) - ddc_of_t(0)))) + + # plt.show() + + def plot_n_win_curves(n=-1, num_pts=50): global curves_when_i_win - if n > len(curves_when_i_win) -1 or n < 0: - print "n bigger than num curves or equal to -1, plotting last curve" - n = len(curves_when_i_win) -1 + if n > len(curves_when_i_win) - 1 or n < 0: + print("n bigger than num curves or equal to -1, plotting last curve") + n = len(curves_when_i_win) - 1 for i in range(n): plot_win_curve(i, num_pts) plt.show() - + num_tested = 0. for i in range(1000): - num_tested = i-1 - mine, theirs, r_mine, r_theirs, c0, dc0, H,h, p, N = test_continuous_cpp_vs_continuous_py() - #~ mine, theirs, r_mine, r_theirs, c0, dc0, H,h, p, N = test_momentum_cpp_vs_momentum_py() - #~ print "H test", H.shape - if(mine != theirs): - total_disagree+=1 - if(mine): - #~ times_disagree +=[r_mine.t] - #~ raise ValueError (" BITE ME " ) - margin_i_win_he_lose+=[r_theirs.dc] - curves_when_i_win+=[(c0[:], dc0[:], r_theirs.c[:], r_theirs.dc[:], r_mine.t, r_mine.c_of_t, r_mine.dc_of_t, r_mine.ddc_of_t, H[:], h[:], p[:], N, r_mine.dL_of_t, r_mine.L_of_t)] - #~ print "margin when he lost: ", norm(r_theirs.dc) - #~ else: - #~ times_disagree +=[r_theirs.t] + num_tested = i - 1 + mine, theirs, r_mine, r_theirs, c0, dc0, H, h, p, N = test_continuous_cpp_vs_continuous_py() + # mine, theirs, r_mine, r_theirs, c0, dc0, H,h, p, N = test_momentum_cpp_vs_momentum_py() + # print("H test", H.shape) + if (mine != theirs): + total_disagree += 1 + if (mine): + # times_disagree +=[r_mine.t] + # raise ValueError (" BITE ME " ) + margin_i_win_he_lose += [r_theirs.dc] + curves_when_i_win += [ + (c0[:], dc0[:], r_theirs.c[:], r_theirs.dc[:], r_mine.t, r_mine.c_of_t, r_mine.dc_of_t, + r_mine.ddc_of_t, H[:], h[:], p[:], N, r_mine.dL_of_t, r_mine.L_of_t) + ] + # print("margin when he lost: ", norm(r_theirs.dc)) + # else: + # times_disagree +=[r_theirs.t] if mine: - mine_won +=1 + mine_won += 1 else: - mine_lose +=1 - elif(mine or theirs): - total_stop+=1 - #~ times_agree_stop+=[r_mine.t] - margin_he_wins_i_lost+=[r_theirs.ddc_min] - - #~ margin_i_win_he_lose+=[r_theirs.dc] - #~ curves_when_i_win+=[(c0[:], dc0[:], r_theirs.c[:], r_theirs.dc[:], r_mine.t, r_mine.c_of_t, r_mine.dc_of_t, r_mine.ddc_of_t, H[:], h[:], p[:], N)] - #~ print "margin when he wins: ", r_theirs.ddc_min + mine_lose += 1 + elif (mine or theirs): + total_stop += 1 + # times_agree_stop+=[r_mine.t] + margin_he_wins_i_lost += [r_theirs.ddc_min] + + # margin_i_win_he_lose+=[r_theirs.dc] + # curves_when_i_win+=[(c0[:], dc0[:], r_theirs.c[:], r_theirs.dc[:], r_mine.t, r_mine.c_of_t, + # r_mine.dc_of_t, r_mine.ddc_of_t, H[:], h[:], p[:], N)] + # print("margin when he wins: ", r_theirs.ddc_min) else: - total_not_stop+=1 - - print "% of stops", 100. * float(total_stop) / num_tested, total_stop - print "% of total_disagree", 100. * float(total_disagree) / num_tested, total_disagree + total_not_stop += 1 + + print("% of stops", 100. * float(total_stop) / num_tested, total_stop) + print("% of total_disagree", 100. * float(total_disagree) / num_tested, total_disagree) if total_disagree > 0: - print "% of wins", 100. * float(mine_won) / total_disagree - print "% of lose", 100. * float(mine_lose) / total_disagree - - - + print("% of wins", 100. * float(mine_won) / total_disagree) + print("% of lose", 100. * float(mine_lose) / total_disagree) -- GitLab