From be943c14aa8b00982e9ed07e1dbe8b4c9cfef7af Mon Sep 17 00:00:00 2001 From: Joseph Mirabel <jmirabel@laas.fr> Date: Fri, 3 Jun 2016 19:29:52 +0200 Subject: [PATCH] Remove svm classifiers --- CMakeLists.txt | 1 - test/CMakeLists.txt | 1 - test/libsvm/svm.cpp | 3288 -------------------------------------- test/libsvm/svm.h | 115 -- test/libsvm_classifier.h | 212 --- test/test_fcl_simple.cpp | 12 - 6 files changed, 3629 deletions(-) delete mode 100644 test/libsvm/svm.cpp delete mode 100644 test/libsvm/svm.h delete mode 100644 test/libsvm_classifier.h diff --git a/CMakeLists.txt b/CMakeLists.txt index cd9636ee..d0e5356c 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -126,7 +126,6 @@ SET(${PROJECT_NAME}_HEADERS include/hpp/fcl/collision_func_matrix.h include/hpp/fcl/distance.h include/hpp/fcl/continuous_collision.h - include/hpp/fcl/math/vec_nf.h include/hpp/fcl/math/matrix_3f.h include/hpp/fcl/math/matrix_3fx.h include/hpp/fcl/math/vec_3f.h diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index f0f09c65..d03acad6 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -39,7 +39,6 @@ add_fcl_test(test_fcl_capsule_box_1 test_fcl_capsule_box_1.cpp) add_fcl_test(test_fcl_capsule_box_2 test_fcl_capsule_box_2.cpp) #add_fcl_test(test_fcl_obb test_fcl_obb.cpp) -#add_fcl_test(test_fcl_global_penetration test_fcl_global_penetration.cpp libsvm/svm.cpp test_fcl_utility.cpp) add_fcl_test(test_fcl_bvh_models test_fcl_bvh_models.cpp test_fcl_utility.cpp) if (FCL_HAVE_OCTOMAP) diff --git a/test/libsvm/svm.cpp b/test/libsvm/svm.cpp deleted file mode 100644 index 219a352a..00000000 --- a/test/libsvm/svm.cpp +++ /dev/null @@ -1,3288 +0,0 @@ -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <ctype.h> -#include <float.h> -#include <string.h> -#include <stdarg.h> -#include <limits.h> -#include <locale.h> -#include <assert.h> -#include "svm.h" -int libsvm_version = LIBSVM_VERSION; -typedef float Qfloat; -typedef signed char schar; -#ifndef min -template <class T> static inline T min(T x,T y) { return (x<y)?x:y; } -#endif -#ifndef max -template <class T> static inline T max(T x,T y) { return (x>y)?x:y; } -#endif -template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; } -template <class S, class T> static inline void clone(T*& dst, S* src, int n) -{ - dst = new T[n]; - memcpy((void *)dst,(void *)src,sizeof(T)*n); -} -static inline double powi(double base, int times) -{ - double tmp = base, ret = 1.0; - - for(int t=times; t>0; t/=2) - { - if(t%2==1) ret*=tmp; - tmp = tmp * tmp; - } - return ret; -} -#define INF HUGE_VAL -#define TAU 1e-12 -#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) - -static void print_string_stdout(const char *s) -{ - fputs(s,stdout); - fflush(stdout); -} -static void (*svm_print_string) (const char *) = &print_string_stdout; -#if 0 -static void info(const char *fmt,...) -{ - char buf[BUFSIZ]; - va_list ap; - va_start(ap,fmt); - vsprintf(buf,fmt,ap); - va_end(ap); - (*svm_print_string)(buf); -} -#else -static void info(const char *fmt,...) {} -#endif - -// -// Kernel Cache -// -// l is the number of total data items -// size is the cache size limit in bytes -// -class Cache -{ -public: - Cache(int l,long int size); - ~Cache(); - - // request data [0,len) - // return some position p where [p,len) need to be filled - // (p >= len if nothing needs to be filled) - int get_data(const int index, Qfloat **data, int len); - void swap_index(int i, int j); -private: - int l; - long int size; - struct head_t - { - head_t *prev, *next; // a circular list - Qfloat *data; - int len; // data[0,len) is cached in this entry - }; - - head_t *head; - head_t lru_head; - void lru_delete(head_t *h); - void lru_insert(head_t *h); -}; - -Cache::Cache(int l_,long int size_):l(l_),size(size_) -{ - head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 - size /= sizeof(Qfloat); - size -= l * sizeof(head_t) / sizeof(Qfloat); - size = max(size, 2 * (long int) l); // cache must be large enough for two columns - lru_head.next = lru_head.prev = &lru_head; -} - -Cache::~Cache() -{ - for(head_t *h = lru_head.next; h != &lru_head; h=h->next) - free(h->data); - free(head); -} - -void Cache::lru_delete(head_t *h) -{ - // delete from current location - h->prev->next = h->next; - h->next->prev = h->prev; -} - -void Cache::lru_insert(head_t *h) -{ - // insert to last position - h->next = &lru_head; - h->prev = lru_head.prev; - h->prev->next = h; - h->next->prev = h; -} - -int Cache::get_data(const int index, Qfloat **data, int len) -{ - head_t *h = &head[index]; - if(h->len) lru_delete(h); - int more = len - h->len; - - if(more > 0) - { - // free old space - while(size < more) - { - head_t *old = lru_head.next; - lru_delete(old); - free(old->data); - size += old->len; - old->data = 0; - old->len = 0; - } - - // allocate new space - h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); - size -= more; - swap(h->len,len); - } - - lru_insert(h); - *data = h->data; - return len; -} - -void Cache::swap_index(int i, int j) -{ - if(i==j) return; - - if(head[i].len) lru_delete(&head[i]); - if(head[j].len) lru_delete(&head[j]); - swap(head[i].data,head[j].data); - swap(head[i].len,head[j].len); - if(head[i].len) lru_insert(&head[i]); - if(head[j].len) lru_insert(&head[j]); - - if(i>j) swap(i,j); - for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) - { - if(h->len > i) - { - if(h->len > j) - swap(h->data[i],h->data[j]); - else - { - // give up - lru_delete(h); - free(h->data); - size += h->len; - h->data = 0; - h->len = 0; - } - } - } -} - -// -// Kernel evaluation -// -// the static method k_function is for doing single kernel evaluation -// the constructor of Kernel prepares to calculate the l*l kernel matrix -// the member function get_Q is for getting one column from the Q Matrix -// -class QMatrix { -public: - virtual Qfloat *get_Q(int column, int len) const = 0; - virtual double *get_QD() const = 0; - virtual void swap_index(int i, int j) const = 0; - virtual ~QMatrix() {} -}; - -class Kernel: public QMatrix { -public: - Kernel(int l, svm_node * const * x, const svm_parameter& param); - virtual ~Kernel(); - - static double k_function(const svm_node *x, const svm_node *y, - const svm_parameter& param); - - virtual Qfloat *get_Q(int column, int len) const = 0; - virtual double *get_QD() const = 0; - virtual void swap_index(int i, int j) const // no so const... - { - swap(x[i],x[j]); - if(x_square) swap(x_square[i],x_square[j]); - } -protected: - - double (Kernel::*kernel_function)(int i, int j) const; - -private: - const svm_node **x; - double *x_square; - - // svm_parameter - const int kernel_type; - const int degree; - const double gamma; - const double coef0; - - static double dot(const svm_node *px, const svm_node *py); - double kernel_linear(int i, int j) const - { - return dot(x[i],x[j]); - } - double kernel_poly(int i, int j) const - { - return powi(gamma*dot(x[i],x[j])+coef0,degree); - } - double kernel_rbf(int i, int j) const - { - return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); - } - double kernel_sigmoid(int i, int j) const - { - return tanh(gamma*dot(x[i],x[j])+coef0); - } - double kernel_precomputed(int i, int j) const - { - return x[i][(int)(x[j][0].value)].value; - } -}; - - -double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param) -{ - return Kernel::k_function(x, y, param); -} - -Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) - :kernel_type(param.kernel_type), degree(param.degree), - gamma(param.gamma), coef0(param.coef0) -{ - switch(kernel_type) - { - case LINEAR: - kernel_function = &Kernel::kernel_linear; - break; - case POLY: - kernel_function = &Kernel::kernel_poly; - break; - case RBF: - kernel_function = &Kernel::kernel_rbf; - break; - case SIGMOID: - kernel_function = &Kernel::kernel_sigmoid; - break; - case PRECOMPUTED: - kernel_function = &Kernel::kernel_precomputed; - break; - } - - clone(x,x_,l); - - if(kernel_type == RBF) - { - x_square = new double[l]; - for(int i=0;i<l;i++) - x_square[i] = dot(x[i],x[i]); - } - else - x_square = 0; -} - -Kernel::~Kernel() -{ - delete[] x; - delete[] x_square; -} - -double Kernel::dot(const svm_node *px, const svm_node *py) -{ - double sum = 0; - while(px->index != -1 && py->index != -1) - { - if(px->index == py->index) - { - sum += px->value * py->value; - ++px; - ++py; - } - else - { - if(px->index > py->index) - ++py; - else - ++px; - } - } - return sum; -} - -double Kernel::k_function(const svm_node *x, const svm_node *y, - const svm_parameter& param) -{ - switch(param.kernel_type) - { - case LINEAR: - return dot(x,y); - case POLY: - return powi(param.gamma*dot(x,y)+param.coef0,param.degree); - case RBF: - { - double sum = 0; - while(x->index != -1 && y->index !=-1) - { - if(x->index == y->index) - { - double d = x->value - y->value; - sum += d*d; - ++x; - ++y; - } - else - { - if(x->index > y->index) - { - sum += y->value * y->value; - ++y; - } - else - { - sum += x->value * x->value; - ++x; - } - } - } - - while(x->index != -1) - { - sum += x->value * x->value; - ++x; - } - - while(y->index != -1) - { - sum += y->value * y->value; - ++y; - } - - return exp(-param.gamma*sum); - } - case SIGMOID: - return tanh(param.gamma*dot(x,y)+param.coef0); - case PRECOMPUTED: //x: test (validation), y: SV - return x[(int)(y->value)].value; - default: - return 0; // Unreachable - } -} - -// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 -// Solves: -// -// min 0.5(\alpha^T Q \alpha) + p^T \alpha -// -// y^T \alpha = \delta -// y_i = +1 or -1 -// 0 <= alpha_i <= Cp for y_i = 1 -// 0 <= alpha_i <= Cn for y_i = -1 -// -// Given: -// -// Q, p, y, Cp, Cn, and an initial feasible point \alpha -// l is the size of vectors and matrices -// eps is the stopping tolerance -// -// solution will be put in \alpha, objective value will be put in obj -// -class Solver { -public: - Solver() {}; - virtual ~Solver() {}; - - struct SolutionInfo { - double obj; - double rho; - double *upper_bound; - double r; // for Solver_NU - }; - - void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, - double *alpha_, const double* C_, double eps, - SolutionInfo* si, int shrinking); -protected: - int active_size; - schar *y; - double *G; // gradient of objective function - enum { LOWER_BOUND, UPPER_BOUND, FREE }; - char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE - double *alpha; - const QMatrix *Q; - const double *QD; - double eps; - double Cp,Cn; - double *C; - double *p; - int *active_set; - double *G_bar; // gradient, if we treat free variables as 0 - int l; - bool unshrink; // XXX - - double get_C(int i) - { - return C[i]; - } - void update_alpha_status(int i) - { - if(alpha[i] >= get_C(i)) - alpha_status[i] = UPPER_BOUND; - else if(alpha[i] <= 0) - alpha_status[i] = LOWER_BOUND; - else alpha_status[i] = FREE; - } - bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } - bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } - bool is_free(int i) { return alpha_status[i] == FREE; } - void swap_index(int i, int j); - void reconstruct_gradient(); - virtual int select_working_set(int &i, int &j); - virtual double calculate_rho(); - virtual void do_shrinking(); -private: - bool be_shrunk(int i, double Gmax1, double Gmax2); -}; - -void Solver::swap_index(int i, int j) -{ - Q->swap_index(i,j); - swap(y[i],y[j]); - swap(G[i],G[j]); - swap(alpha_status[i],alpha_status[j]); - swap(alpha[i],alpha[j]); - swap(p[i],p[j]); - swap(active_set[i],active_set[j]); - swap(G_bar[i],G_bar[j]); - swap(C[i],C[j]); -} - -void Solver::reconstruct_gradient() -{ - // reconstruct inactive elements of G from G_bar and free variables - - if(active_size == l) return; - - int i,j; - int nr_free = 0; - - for(j=active_size;j<l;j++) - G[j] = G_bar[j] + p[j]; - - for(j=0;j<active_size;j++) - if(is_free(j)) - nr_free++; - - if(2*nr_free < active_size) - info("\nWARNING: using -h 0 may be faster\n"); - - if (nr_free*l > 2*active_size*(l-active_size)) - { - for(i=active_size;i<l;i++) - { - const Qfloat *Q_i = Q->get_Q(i,active_size); - for(j=0;j<active_size;j++) - if(is_free(j)) - G[i] += alpha[j] * Q_i[j]; - } - } - else - { - for(i=0;i<active_size;i++) - if(is_free(i)) - { - const Qfloat *Q_i = Q->get_Q(i,l); - double alpha_i = alpha[i]; - for(j=active_size;j<l;j++) - G[j] += alpha_i * Q_i[j]; - } - } -} - -void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, - double *alpha_, const double* C_, double eps, - SolutionInfo* si, int shrinking) -{ - this->l = l; - this->Q = &Q; - QD=Q.get_QD(); - clone(p, p_,l); - clone(y, y_,l); - clone(alpha,alpha_,l); - clone(C,C_,l); - this->eps = eps; - unshrink = false; - - // initialize alpha_status - { - alpha_status = new char[l]; - for(int i=0;i<l;i++) - update_alpha_status(i); - } - - // initialize active set (for shrinking) - { - active_set = new int[l]; - for(int i=0;i<l;i++) - active_set[i] = i; - active_size = l; - } - - // initialize gradient - { - G = new double[l]; - G_bar = new double[l]; - int i; - for(i=0;i<l;i++) - { - G[i] = p[i]; - G_bar[i] = 0; - } - for(i=0;i<l;i++) - if(!is_lower_bound(i)) - { - const Qfloat *Q_i = Q.get_Q(i,l); - double alpha_i = alpha[i]; - int j; - for(j=0;j<l;j++) - G[j] += alpha_i*Q_i[j]; - if(is_upper_bound(i)) - for(j=0;j<l;j++) - G_bar[j] += get_C(i) * Q_i[j]; - } - } - - // optimization step - - int iter = 0; - int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l); - int counter = min(l,1000)+1; - - while(iter < max_iter) - { - // show progress and do shrinking - - if(--counter == 0) - { - counter = min(l,1000); - if(shrinking) do_shrinking(); - info("."); - } - - int i,j; - if(select_working_set(i,j)!=0) - { - // reconstruct the whole gradient - reconstruct_gradient(); - // reset active set size and check - active_size = l; - info("*"); - if(select_working_set(i,j)!=0) - break; - else - counter = 1; // do shrinking next iteration - } - - ++iter; - - // update alpha[i] and alpha[j], handle bounds carefully - - const Qfloat *Q_i = Q.get_Q(i,active_size); - const Qfloat *Q_j = Q.get_Q(j,active_size); - - double C_i = get_C(i); - double C_j = get_C(j); - - double old_alpha_i = alpha[i]; - double old_alpha_j = alpha[j]; - - if(y[i]!=y[j]) - { - double quad_coef = QD[i]+QD[j]+2*Q_i[j]; - if (quad_coef <= 0) - quad_coef = TAU; - double delta = (-G[i]-G[j])/quad_coef; - double diff = alpha[i] - alpha[j]; - alpha[i] += delta; - alpha[j] += delta; - - if(diff > 0) - { - if(alpha[j] < 0) - { - alpha[j] = 0; - alpha[i] = diff; - } - } - else - { - if(alpha[i] < 0) - { - alpha[i] = 0; - alpha[j] = -diff; - } - } - if(diff > C_i - C_j) - { - if(alpha[i] > C_i) - { - alpha[i] = C_i; - alpha[j] = C_i - diff; - } - } - else - { - if(alpha[j] > C_j) - { - alpha[j] = C_j; - alpha[i] = C_j + diff; - } - } - } - else - { - double quad_coef = QD[i]+QD[j]-2*Q_i[j]; - if (quad_coef <= 0) - quad_coef = TAU; - double delta = (G[i]-G[j])/quad_coef; - double sum = alpha[i] + alpha[j]; - alpha[i] -= delta; - alpha[j] += delta; - - if(sum > C_i) - { - if(alpha[i] > C_i) - { - alpha[i] = C_i; - alpha[j] = sum - C_i; - } - } - else - { - if(alpha[j] < 0) - { - alpha[j] = 0; - alpha[i] = sum; - } - } - if(sum > C_j) - { - if(alpha[j] > C_j) - { - alpha[j] = C_j; - alpha[i] = sum - C_j; - } - } - else - { - if(alpha[i] < 0) - { - alpha[i] = 0; - alpha[j] = sum; - } - } - } - - // update G - - double delta_alpha_i = alpha[i] - old_alpha_i; - double delta_alpha_j = alpha[j] - old_alpha_j; - - for(int k=0;k<active_size;k++) - { - G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; - } - - // update alpha_status and G_bar - - { - bool ui = is_upper_bound(i); - bool uj = is_upper_bound(j); - update_alpha_status(i); - update_alpha_status(j); - int k; - if(ui != is_upper_bound(i)) - { - Q_i = Q.get_Q(i,l); - if(ui) - for(k=0;k<l;k++) - G_bar[k] -= C_i * Q_i[k]; - else - for(k=0;k<l;k++) - G_bar[k] += C_i * Q_i[k]; - } - - if(uj != is_upper_bound(j)) - { - Q_j = Q.get_Q(j,l); - if(uj) - for(k=0;k<l;k++) - G_bar[k] -= C_j * Q_j[k]; - else - for(k=0;k<l;k++) - G_bar[k] += C_j * Q_j[k]; - } - } - } - - if(iter >= max_iter) - { - if(active_size < l) - { - // reconstruct the whole gradient to calculate objective value - reconstruct_gradient(); - active_size = l; - info("*"); - } - fprintf(stderr,"\nWARNING: reaching max number of iterations\n"); - } - - // calculate rho - - si->rho = calculate_rho(); - - // calculate objective value - { - double v = 0; - int i; - for(i=0;i<l;i++) - v += alpha[i] * (G[i] + p[i]); - - si->obj = v/2; - } - - // put back the solution - { - for(int i=0;i<l;i++) - alpha_[active_set[i]] = alpha[i]; - } - - // juggle everything back - /*{ - for(int i=0;i<l;i++) - while(active_set[i] != i) - swap_index(i,active_set[i]); - // or Q.swap_index(i,active_set[i]); - }*/ - - for(int i=0;i<l;i++) - si->upper_bound[i] = C[i]; - - info("\noptimization finished, #iter = %d\n",iter); - - delete[] p; - delete[] y; - delete[] C; - delete[] alpha; - delete[] alpha_status; - delete[] active_set; - delete[] G; - delete[] G_bar; -} - -// return 1 if already optimal, return 0 otherwise -int Solver::select_working_set(int &out_i, int &out_j) -{ - // return i,j such that - // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) - // j: minimizes the decrease of obj value - // (if quadratic coefficeint <= 0, replace it with tau) - // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) - - double Gmax = -INF; - double Gmax2 = -INF; - int Gmax_idx = -1; - int Gmin_idx = -1; - double obj_diff_min = INF; - - for(int t=0;t<active_size;t++) - if(y[t]==+1) - { - if(!is_upper_bound(t)) - if(-G[t] >= Gmax) - { - Gmax = -G[t]; - Gmax_idx = t; - } - } - else - { - if(!is_lower_bound(t)) - if(G[t] >= Gmax) - { - Gmax = G[t]; - Gmax_idx = t; - } - } - - int i = Gmax_idx; - const Qfloat *Q_i = NULL; - if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 - Q_i = Q->get_Q(i,active_size); - - for(int j=0;j<active_size;j++) - { - if(y[j]==+1) - { - if (!is_lower_bound(j)) - { - double grad_diff=Gmax+G[j]; - if (G[j] >= Gmax2) - Gmax2 = G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - else - { - if (!is_upper_bound(j)) - { - double grad_diff= Gmax-G[j]; - if (-G[j] >= Gmax2) - Gmax2 = -G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - } - - if(Gmax+Gmax2 < eps) - return 1; - - out_i = Gmax_idx; - out_j = Gmin_idx; - return 0; -} - -bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) -{ - if(is_upper_bound(i)) - { - if(y[i]==+1) - return(-G[i] > Gmax1); - else - return(-G[i] > Gmax2); - } - else if(is_lower_bound(i)) - { - if(y[i]==+1) - return(G[i] > Gmax2); - else - return(G[i] > Gmax1); - } - else - return(false); -} - -void Solver::do_shrinking() -{ - int i; - double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } - double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } - - // find maximal violating pair first - for(i=0;i<active_size;i++) - { - if(y[i]==+1) - { - if(!is_upper_bound(i)) - { - if(-G[i] >= Gmax1) - Gmax1 = -G[i]; - } - if(!is_lower_bound(i)) - { - if(G[i] >= Gmax2) - Gmax2 = G[i]; - } - } - else - { - if(!is_upper_bound(i)) - { - if(-G[i] >= Gmax2) - Gmax2 = -G[i]; - } - if(!is_lower_bound(i)) - { - if(G[i] >= Gmax1) - Gmax1 = G[i]; - } - } - } - - if(unshrink == false && Gmax1 + Gmax2 <= eps*10) - { - unshrink = true; - reconstruct_gradient(); - active_size = l; - info("*"); - } - - for(i=0;i<active_size;i++) - if (be_shrunk(i, Gmax1, Gmax2)) - { - active_size--; - while (active_size > i) - { - if (!be_shrunk(active_size, Gmax1, Gmax2)) - { - swap_index(i,active_size); - break; - } - active_size--; - } - } -} - -double Solver::calculate_rho() -{ - double r; - int nr_free = 0; - double ub = INF, lb = -INF, sum_free = 0; - for(int i=0;i<active_size;i++) - { - double yG = y[i]*G[i]; - - if(is_upper_bound(i)) - { - if(y[i]==-1) - ub = min(ub,yG); - else - lb = max(lb,yG); - } - else if(is_lower_bound(i)) - { - if(y[i]==+1) - ub = min(ub,yG); - else - lb = max(lb,yG); - } - else - { - ++nr_free; - sum_free += yG; - } - } - - if(nr_free>0) - r = sum_free/nr_free; - else - r = (ub+lb)/2; - - return r; -} - -// -// Solver for nu-svm classification and regression -// -// additional constraint: e^T \alpha = constant -// -class Solver_NU : public Solver -{ -public: - Solver_NU() {} - void Solve(int l, const QMatrix& Q, const double *p, const schar *y, - double *alpha, double* C_, double eps, - SolutionInfo* si, int shrinking) - { - this->si = si; - Solver::Solve(l,Q,p,y,alpha,C_,eps,si,shrinking); - } -private: - SolutionInfo *si; - int select_working_set(int &i, int &j); - double calculate_rho(); - bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); - void do_shrinking(); -}; - -// return 1 if already optimal, return 0 otherwise -int Solver_NU::select_working_set(int &out_i, int &out_j) -{ - // return i,j such that y_i = y_j and - // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) - // j: minimizes the decrease of obj value - // (if quadratic coefficeint <= 0, replace it with tau) - // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) - - double Gmaxp = -INF; - double Gmaxp2 = -INF; - int Gmaxp_idx = -1; - - double Gmaxn = -INF; - double Gmaxn2 = -INF; - int Gmaxn_idx = -1; - - int Gmin_idx = -1; - double obj_diff_min = INF; - - for(int t=0;t<active_size;t++) - if(y[t]==+1) - { - if(!is_upper_bound(t)) - if(-G[t] >= Gmaxp) - { - Gmaxp = -G[t]; - Gmaxp_idx = t; - } - } - else - { - if(!is_lower_bound(t)) - if(G[t] >= Gmaxn) - { - Gmaxn = G[t]; - Gmaxn_idx = t; - } - } - - int ip = Gmaxp_idx; - int in = Gmaxn_idx; - const Qfloat *Q_ip = NULL; - const Qfloat *Q_in = NULL; - if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 - Q_ip = Q->get_Q(ip,active_size); - if(in != -1) - Q_in = Q->get_Q(in,active_size); - - for(int j=0;j<active_size;j++) - { - if(y[j]==+1) - { - if (!is_lower_bound(j)) - { - double grad_diff=Gmaxp+G[j]; - if (G[j] >= Gmaxp2) - Gmaxp2 = G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - else - { - if (!is_upper_bound(j)) - { - double grad_diff=Gmaxn-G[j]; - if (-G[j] >= Gmaxn2) - Gmaxn2 = -G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef = QD[in]+QD[j]-2*Q_in[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - } - - if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) - return 1; - - if (y[Gmin_idx] == +1) - out_i = Gmaxp_idx; - else - out_i = Gmaxn_idx; - out_j = Gmin_idx; - - return 0; -} - -bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) -{ - if(is_upper_bound(i)) - { - if(y[i]==+1) - return(-G[i] > Gmax1); - else - return(-G[i] > Gmax4); - } - else if(is_lower_bound(i)) - { - if(y[i]==+1) - return(G[i] > Gmax2); - else - return(G[i] > Gmax3); - } - else - return(false); -} - -void Solver_NU::do_shrinking() -{ - double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } - double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } - double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } - double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } - - // find maximal violating pair first - int i; - for(i=0;i<active_size;i++) - { - if(!is_upper_bound(i)) - { - if(y[i]==+1) - { - if(-G[i] > Gmax1) Gmax1 = -G[i]; - } - else if(-G[i] > Gmax4) Gmax4 = -G[i]; - } - if(!is_lower_bound(i)) - { - if(y[i]==+1) - { - if(G[i] > Gmax2) Gmax2 = G[i]; - } - else if(G[i] > Gmax3) Gmax3 = G[i]; - } - } - - if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) - { - unshrink = true; - reconstruct_gradient(); - active_size = l; - } - - for(i=0;i<active_size;i++) - if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) - { - active_size--; - while (active_size > i) - { - if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) - { - swap_index(i,active_size); - break; - } - active_size--; - } - } -} - -double Solver_NU::calculate_rho() -{ - int nr_free1 = 0,nr_free2 = 0; - double ub1 = INF, ub2 = INF; - double lb1 = -INF, lb2 = -INF; - double sum_free1 = 0, sum_free2 = 0; - - for(int i=0;i<active_size;i++) - { - if(y[i]==+1) - { - if(is_upper_bound(i)) - lb1 = max(lb1,G[i]); - else if(is_lower_bound(i)) - ub1 = min(ub1,G[i]); - else - { - ++nr_free1; - sum_free1 += G[i]; - } - } - else - { - if(is_upper_bound(i)) - lb2 = max(lb2,G[i]); - else if(is_lower_bound(i)) - ub2 = min(ub2,G[i]); - else - { - ++nr_free2; - sum_free2 += G[i]; - } - } - } - - double r1,r2; - if(nr_free1 > 0) - r1 = sum_free1/nr_free1; - else - r1 = (ub1+lb1)/2; - - if(nr_free2 > 0) - r2 = sum_free2/nr_free2; - else - r2 = (ub2+lb2)/2; - - si->r = (r1+r2)/2; - return (r1-r2)/2; -} - -// -// Q matrices for various formulations -// -class SVC_Q: public Kernel -{ -public: - SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) - :Kernel(prob.l, prob.x, param) - { - clone(y,y_,prob.l); - cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); - QD = new double[prob.l]; - for(int i=0;i<prob.l;i++) - QD[i] = (this->*kernel_function)(i,i); - } - - Qfloat *get_Q(int i, int len) const - { - Qfloat *data; - int start, j; - if((start = cache->get_data(i,&data,len)) < len) - { - for(j=start;j<len;j++) - data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j)); - } - return data; - } - - double *get_QD() const - { - return QD; - } - - void swap_index(int i, int j) const - { - cache->swap_index(i,j); - Kernel::swap_index(i,j); - swap(y[i],y[j]); - swap(QD[i],QD[j]); - } - - ~SVC_Q() - { - delete[] y; - delete cache; - delete[] QD; - } -private: - schar *y; - Cache *cache; - double *QD; -}; - -class ONE_CLASS_Q: public Kernel -{ -public: - ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) - :Kernel(prob.l, prob.x, param) - { - cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); - QD = new double[prob.l]; - for(int i=0;i<prob.l;i++) - QD[i] = (this->*kernel_function)(i,i); - } - - Qfloat *get_Q(int i, int len) const - { - Qfloat *data; - int start, j; - if((start = cache->get_data(i,&data,len)) < len) - { - for(j=start;j<len;j++) - data[j] = (Qfloat)(this->*kernel_function)(i,j); - } - return data; - } - - double *get_QD() const - { - return QD; - } - - void swap_index(int i, int j) const - { - cache->swap_index(i,j); - Kernel::swap_index(i,j); - swap(QD[i],QD[j]); - } - - ~ONE_CLASS_Q() - { - delete cache; - delete[] QD; - } -private: - Cache *cache; - double *QD; -}; - -class SVR_Q: public Kernel -{ -public: - SVR_Q(const svm_problem& prob, const svm_parameter& param) - :Kernel(prob.l, prob.x, param) - { - l = prob.l; - cache = new Cache(l,(long int)(param.cache_size*(1<<20))); - QD = new double[2*l]; - sign = new schar[2*l]; - index = new int[2*l]; - for(int k=0;k<l;k++) - { - sign[k] = 1; - sign[k+l] = -1; - index[k] = k; - index[k+l] = k; - QD[k] = (this->*kernel_function)(k,k); - QD[k+l] = QD[k]; - } - buffer[0] = new Qfloat[2*l]; - buffer[1] = new Qfloat[2*l]; - next_buffer = 0; - } - - void swap_index(int i, int j) const - { - swap(sign[i],sign[j]); - swap(index[i],index[j]); - swap(QD[i],QD[j]); - } - - Qfloat *get_Q(int i, int len) const - { - Qfloat *data; - int j, real_i = index[i]; - if(cache->get_data(real_i,&data,l) < l) - { - for(j=0;j<l;j++) - data[j] = (Qfloat)(this->*kernel_function)(real_i,j); - } - - // reorder and copy - Qfloat *buf = buffer[next_buffer]; - next_buffer = 1 - next_buffer; - schar si = sign[i]; - for(j=0;j<len;j++) - buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]]; - return buf; - } - - double *get_QD() const - { - return QD; - } - - ~SVR_Q() - { - delete cache; - delete[] sign; - delete[] index; - delete[] buffer[0]; - delete[] buffer[1]; - delete[] QD; - } -private: - int l; - Cache *cache; - schar *sign; - int *index; - mutable int next_buffer; - Qfloat *buffer[2]; - double *QD; -}; -#include <iostream> -// -// construct and solve various formulations -// -static void solve_c_svc( - const svm_problem *prob, const svm_parameter* param, - double *alpha, Solver::SolutionInfo* si, double Cp, double Cn) -{ - int l = prob->l; - double *minus_ones = new double[l]; - schar *y = new schar[l]; - double *C = new double[l]; - - int i; - - for(i=0;i<l;i++) - { - alpha[i] = 0; - minus_ones[i] = -1; - if(prob->y[i] > 0) - { - y[i] = +1; - C[i] = prob->W[i]*Cp; - } - else - { - y[i] = -1; - C[i] = prob->W[i]*Cn; - } - //std::cout << C[i] << " "; - } - //std::cout << std::endl; - - Solver s; - s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, - alpha, C, param->eps, si, param->shrinking); - - /* - double sum_alpha=0; - for(i=0;i<l;i++) - sum_alpha += alpha[i]; - if (Cp==Cn) - info("nu = %f\n", sum_alpha/(Cp*prob->l)); - */ - - for(i=0;i<l;i++) - alpha[i] *= y[i]; - - delete[] C; - delete[] minus_ones; - delete[] y; -} - -static void solve_nu_svc( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int i; - int l = prob->l; - double nu = param->nu; - - schar *y = new schar[l]; - double *C = new double[l]; - - for(i=0;i<l;i++) - { - if(prob->y[i]>0) - y[i] = +1; - else - y[i] = -1; - C[i] = prob->W[i]; - } - - double nu_l = 0; - for(i=0;i<l;i++) nu_l += nu*C[i]; - double sum_pos = nu_l/2; - double sum_neg = nu_l/2; - - for(i=0;i<l;i++) - if(y[i] == +1) - { - alpha[i] = min(C[i],sum_pos); - sum_pos -= alpha[i]; - } - else - { - alpha[i] = min(C[i],sum_neg); - sum_neg -= alpha[i]; - } - - double *zeros = new double[l]; - - for(i=0;i<l;i++) - zeros[i] = 0; - - Solver_NU s; - s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, - alpha, C, param->eps, si, param->shrinking); - double r = si->r; - - info("C = %f\n",1/r); - - for(i=0;i<l;i++) - { - alpha[i] *= y[i]/r; - si->upper_bound[i] /= r; - } - - si->rho /= r; - si->obj /= (r*r); - - delete[] C; - delete[] y; - delete[] zeros; -} - -static void solve_one_class( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int l = prob->l; - double *zeros = new double[l]; - schar *ones = new schar[l]; - double *C = new double[l]; - int i; - - double nu_l = 0; - - for(i=0;i<l;i++) - { - C[i] = prob->W[i]; - nu_l += C[i] * param->nu; - } - - i = 0; - while(nu_l > 0) - { - alpha[i] = min(C[i],nu_l); - nu_l -= alpha[i]; - ++i; - } - for(;i<l;i++) - alpha[i] = 0; - - for(i=0;i<l;i++) - { - zeros[i] = 0; - ones[i] = 1; - } - - Solver s; - s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, - alpha, C, param->eps, si, param->shrinking); - - delete[] C; - delete[] zeros; - delete[] ones; -} - -static void solve_epsilon_svr( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int l = prob->l; - double *alpha2 = new double[2*l]; - double *linear_term = new double[2*l]; - double *C = new double[2*l]; - schar *y = new schar[2*l]; - int i; - - for(i=0;i<l;i++) - { - alpha2[i] = 0; - linear_term[i] = param->p - prob->y[i]; - y[i] = 1; - C[i] = prob->W[i]*param->C; - - alpha2[i+l] = 0; - linear_term[i+l] = param->p + prob->y[i]; - y[i+l] = -1; - C[i+l] = prob->W[i]*param->C; - } - - Solver s; - s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, - alpha2, C, param->eps, si, param->shrinking); - double sum_alpha = 0; - for(i=0;i<l;i++) - { - alpha[i] = alpha2[i] - alpha2[i+l]; - sum_alpha += fabs(alpha[i]); - } - //info("nu = %f\n",sum_alpha/(param->C*l)); - delete[] alpha2; - delete[] linear_term; - delete[] C; - delete[] y; -} - -static void solve_nu_svr( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int l = prob->l; - double *C = new double[2*l]; - double *alpha2 = new double[2*l]; - double *linear_term = new double[2*l]; - schar *y = new schar[2*l]; - int i; - - double sum = 0; - for(i=0;i<l;i++) - { - C[i] = C[i+l] = prob->W[i]*param->C; - sum += C[i] * param->nu; - } - sum /= 2; - - for(i=0;i<l;i++) - { - alpha2[i] = alpha2[i+l] = min(sum,C[i]); - sum -= alpha2[i]; - - linear_term[i] = - prob->y[i]; - y[i] = 1; - - linear_term[i+l] = prob->y[i]; - y[i+l] = -1; - } - - Solver_NU s; - s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, - alpha2, C, param->eps, si, param->shrinking); - - info("epsilon = %f\n",-si->r); - - for(i=0;i<l;i++) - alpha[i] = alpha2[i] - alpha2[i+l]; - - delete[] alpha2; - delete[] linear_term; - delete[] C; - delete[] y; -} - -// -// decision_function -// -struct decision_function -{ - double *alpha; - double rho; -}; - -static decision_function svm_train_one( - const svm_problem *prob, const svm_parameter *param, - double Cp, double Cn) -{ - double *alpha = Malloc(double,prob->l); - Solver::SolutionInfo si; - switch(param->svm_type) - { - case C_SVC: - si.upper_bound = Malloc(double,prob->l); - solve_c_svc(prob,param,alpha,&si,Cp,Cn); - break; - case NU_SVC: - si.upper_bound = Malloc(double,prob->l); - solve_nu_svc(prob,param,alpha,&si); - break; - case ONE_CLASS: - si.upper_bound = Malloc(double,prob->l); - solve_one_class(prob,param,alpha,&si); - break; - case EPSILON_SVR: - si.upper_bound = Malloc(double,2*prob->l); - solve_epsilon_svr(prob,param,alpha,&si); - break; - case NU_SVR: - si.upper_bound = Malloc(double,2*prob->l); - solve_nu_svr(prob,param,alpha,&si); - break; - } - - info("obj = %f, rho = %f\n",si.obj,si.rho); - - // output SVs - - int nSV = 0; - int nBSV = 0; - for(int i=0;i<prob->l;i++) - { - if(fabs(alpha[i]) > 0) - { - ++nSV; - if(prob->y[i] > 0) - { - if(fabs(alpha[i]) >= si.upper_bound[i]) - ++nBSV; - } - else - { - if(fabs(alpha[i]) >= si.upper_bound[i]) - ++nBSV; - } - } - } - - free(si.upper_bound); - - info("nSV = %d, nBSV = %d\n",nSV,nBSV); - - decision_function f; - f.alpha = alpha; - f.rho = si.rho; - return f; -} - -// Platt's binary SVM Probablistic Output: an improvement from Lin et al. -static void sigmoid_train( - int l, const double *dec_values, const double *labels, - double& A, double& B) -{ - double prior1=0, prior0 = 0; - int i; - - for (i=0;i<l;i++) - if (labels[i] > 0) prior1+=1; - else prior0+=1; - - int max_iter=100; // Maximal number of iterations - double min_step=1e-10; // Minimal step taken in line search - double sigma=1e-12; // For numerically strict PD of Hessian - double eps=1e-5; - double hiTarget=(prior1+1.0)/(prior1+2.0); - double loTarget=1/(prior0+2.0); - double *t=Malloc(double,l); - double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; - double newA,newB,newf,d1,d2; - int iter; - - // Initial Point and Initial Fun Value - A=0.0; B=log((prior0+1.0)/(prior1+1.0)); - double fval = 0.0; - - for (i=0;i<l;i++) - { - if (labels[i]>0) t[i]=hiTarget; - else t[i]=loTarget; - fApB = dec_values[i]*A+B; - if (fApB>=0) - fval += t[i]*fApB + log(1+exp(-fApB)); - else - fval += (t[i] - 1)*fApB +log(1+exp(fApB)); - } - for (iter=0;iter<max_iter;iter++) - { - // Update Gradient and Hessian (use H' = H + sigma I) - h11=sigma; // numerically ensures strict PD - h22=sigma; - h21=0.0;g1=0.0;g2=0.0; - for (i=0;i<l;i++) - { - fApB = dec_values[i]*A+B; - if (fApB >= 0) - { - p=exp(-fApB)/(1.0+exp(-fApB)); - q=1.0/(1.0+exp(-fApB)); - } - else - { - p=1.0/(1.0+exp(fApB)); - q=exp(fApB)/(1.0+exp(fApB)); - } - d2=p*q; - h11+=dec_values[i]*dec_values[i]*d2; - h22+=d2; - h21+=dec_values[i]*d2; - d1=t[i]-p; - g1+=dec_values[i]*d1; - g2+=d1; - } - - // Stopping Criteria - if (fabs(g1)<eps && fabs(g2)<eps) - break; - - // Finding Newton direction: -inv(H') * g - det=h11*h22-h21*h21; - dA=-(h22*g1 - h21 * g2) / det; - dB=-(-h21*g1+ h11 * g2) / det; - gd=g1*dA+g2*dB; - - - stepsize = 1; // Line Search - while (stepsize >= min_step) - { - newA = A + stepsize * dA; - newB = B + stepsize * dB; - - // New function value - newf = 0.0; - for (i=0;i<l;i++) - { - fApB = dec_values[i]*newA+newB; - if (fApB >= 0) - newf += t[i]*fApB + log(1+exp(-fApB)); - else - newf += (t[i] - 1)*fApB +log(1+exp(fApB)); - } - // Check sufficient decrease - if (newf<fval+0.0001*stepsize*gd) - { - A=newA;B=newB;fval=newf; - break; - } - else - stepsize = stepsize / 2.0; - } - - if (stepsize < min_step) - { - info("Line search fails in two-class probability estimates\n"); - break; - } - } - - if (iter>=max_iter) - info("Reaching maximal iterations in two-class probability estimates\n"); - free(t); -} - -static double sigmoid_predict(double decision_value, double A, double B) -{ - double fApB = decision_value*A+B; - // 1-p used later; avoid catastrophic cancellation - if (fApB >= 0) - return exp(-fApB)/(1.0+exp(-fApB)); - else - return 1.0/(1+exp(fApB)) ; -} - -// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng -static void multiclass_probability(int k, double **r, double *p) -{ - int t,j; - int iter = 0, max_iter=max(100,k); - double **Q=Malloc(double *,k); - double *Qp=Malloc(double,k); - double pQp, eps=0.005/k; - - for (t=0;t<k;t++) - { - p[t]=1.0/k; // Valid if k = 1 - Q[t]=Malloc(double,k); - Q[t][t]=0; - for (j=0;j<t;j++) - { - Q[t][t]+=r[j][t]*r[j][t]; - Q[t][j]=Q[j][t]; - } - for (j=t+1;j<k;j++) - { - Q[t][t]+=r[j][t]*r[j][t]; - Q[t][j]=-r[j][t]*r[t][j]; - } - } - for (iter=0;iter<max_iter;iter++) - { - // stopping condition, recalculate QP,pQP for numerical accuracy - pQp=0; - for (t=0;t<k;t++) - { - Qp[t]=0; - for (j=0;j<k;j++) - Qp[t]+=Q[t][j]*p[j]; - pQp+=p[t]*Qp[t]; - } - double max_error=0; - for (t=0;t<k;t++) - { - double error=fabs(Qp[t]-pQp); - if (error>max_error) - max_error=error; - } - if (max_error<eps) break; - - for (t=0;t<k;t++) - { - double diff=(-Qp[t]+pQp)/Q[t][t]; - p[t]+=diff; - pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); - for (j=0;j<k;j++) - { - Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); - p[j]/=(1+diff); - } - } - } - if (iter>=max_iter) - info("Exceeds max_iter in multiclass_prob\n"); - for(t=0;t<k;t++) free(Q[t]); - free(Q); - free(Qp); -} - -// Cross-validation decision values for probability estimates -static void svm_binary_svc_probability( - const svm_problem *prob, const svm_parameter *param, - double Cp, double Cn, double& probA, double& probB) -{ - int i; - int nr_fold = 5; - int *perm = Malloc(int,prob->l); - double *dec_values = Malloc(double,prob->l); - - // random shuffle - for(i=0;i<prob->l;i++) perm[i]=i; - for(i=0;i<prob->l;i++) - { - int j = i+rand()%(prob->l-i); - swap(perm[i],perm[j]); - } - for(i=0;i<nr_fold;i++) - { - int begin = i*prob->l/nr_fold; - int end = (i+1)*prob->l/nr_fold; - int j,k; - struct svm_problem subprob; - - subprob.l = prob->l-(end-begin); - subprob.x = Malloc(struct svm_node*,subprob.l); - subprob.y = Malloc(double,subprob.l); - subprob.W = Malloc(double,subprob.l); - - k=0; - for(j=0;j<begin;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - subprob.W[k] = prob->W[perm[j]]; - ++k; - } - for(j=end;j<prob->l;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - subprob.W[k] = prob->W[perm[j]]; - ++k; - } - int p_count=0,n_count=0; - for(j=0;j<k;j++) - if(subprob.y[j]>0) - p_count++; - else - n_count++; - - if(p_count==0 && n_count==0) - for(j=begin;j<end;j++) - dec_values[perm[j]] = 0; - else if(p_count > 0 && n_count == 0) - for(j=begin;j<end;j++) - dec_values[perm[j]] = 1; - else if(p_count == 0 && n_count > 0) - for(j=begin;j<end;j++) - dec_values[perm[j]] = -1; - else - { - svm_parameter subparam = *param; - subparam.probability=0; - subparam.C=1.0; - subparam.nr_weight=2; - subparam.weight_label = Malloc(int,2); - subparam.weight = Malloc(double,2); - subparam.weight_label[0]=+1; - subparam.weight_label[1]=-1; - subparam.weight[0]=Cp; - subparam.weight[1]=Cn; - struct svm_model *submodel = svm_train(&subprob,&subparam); - for(j=begin;j<end;j++) - { - svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); - // ensure +1 -1 order; reason not using CV subroutine - dec_values[perm[j]] *= submodel->label[0]; - } - svm_free_and_destroy_model(&submodel); - svm_destroy_param(&subparam); - } - free(subprob.x); - free(subprob.y); - free(subprob.W); - } - sigmoid_train(prob->l,dec_values,prob->y,probA,probB); - free(dec_values); - free(perm); -} - -// Return parameter of a Laplace distribution -static double svm_svr_probability( - const svm_problem *prob, const svm_parameter *param) -{ - int i; - int nr_fold = 5; - double *ymv = Malloc(double,prob->l); - double mae = 0; - - svm_parameter newparam = *param; - newparam.probability = 0; - svm_cross_validation(prob,&newparam,nr_fold,ymv); - for(i=0;i<prob->l;i++) - { - ymv[i]=prob->y[i]-ymv[i]; - mae += fabs(ymv[i]); - } - mae /= prob->l; - double std=sqrt(2*mae*mae); - int count=0; - mae=0; - for(i=0;i<prob->l;i++) - if (fabs(ymv[i]) > 5*std) - count=count+1; - else - mae+=fabs(ymv[i]); - mae /= (prob->l-count); - info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); - free(ymv); - return mae; -} - - -// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data -// perm, length l, must be allocated before calling this subroutine -static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) -{ - int l = prob->l; - int max_nr_class = 16; - int nr_class = 0; - int *label = Malloc(int,max_nr_class); - int *count = Malloc(int,max_nr_class); - int *data_label = Malloc(int,l); - int i; - - for(i=0;i<l;i++) - { - int this_label = (int)prob->y[i]; - int j; - for(j=0;j<nr_class;j++) - { - if(this_label == label[j]) - { - ++count[j]; - break; - } - } - data_label[i] = j; - if(j == nr_class) - { - if(nr_class == max_nr_class) - { - max_nr_class *= 2; - label = (int *)realloc(label,max_nr_class*sizeof(int)); - count = (int *)realloc(count,max_nr_class*sizeof(int)); - } - label[nr_class] = this_label; - count[nr_class] = 1; - ++nr_class; - } - } - - int *start = Malloc(int,nr_class); - start[0] = 0; - for(i=1;i<nr_class;i++) - start[i] = start[i-1]+count[i-1]; - for(i=0;i<l;i++) - { - perm[start[data_label[i]]] = i; - ++start[data_label[i]]; - } - start[0] = 0; - for(i=1;i<nr_class;i++) - start[i] = start[i-1]+count[i-1]; - - *nr_class_ret = nr_class; - *label_ret = label; - *start_ret = start; - *count_ret = count; - free(data_label); -} - -// -// Remove zero weighed data as libsvm and some liblinear solvers require C > 0. -// -static void remove_zero_weight(svm_problem *newprob, const svm_problem *prob) -{ - int i; - int l = 0; - for(i=0;i<prob->l;i++) - if(prob->W[i] > 0) l++; - *newprob = *prob; - newprob->l = l; - newprob->x = Malloc(svm_node*,l); - newprob->y = Malloc(double,l); - newprob->W = Malloc(double,l); - - int j = 0; - for(i=0;i<prob->l;i++) - if(prob->W[i] > 0) - { - newprob->x[j] = prob->x[i]; - newprob->y[j] = prob->y[i]; - newprob->W[j] = prob->W[i]; - j++; - } -} - -// -// Interface functions -// -svm_model *svm_train(const svm_problem *prob, const svm_parameter *param) -{ - svm_problem newprob; - remove_zero_weight(&newprob, prob); - prob = &newprob; - - svm_model *model = Malloc(svm_model,1); - model->param = *param; - model->free_sv = 0; // XXX - - if(param->svm_type == ONE_CLASS || - param->svm_type == EPSILON_SVR || - param->svm_type == NU_SVR) - { - // regression or one-class-svm - model->nr_class = 2; - model->label = NULL; - model->nSV = NULL; - model->probA = NULL; model->probB = NULL; - model->sv_coef = Malloc(double *,1); - - if(param->probability && - (param->svm_type == EPSILON_SVR || - param->svm_type == NU_SVR)) - { - model->probA = Malloc(double,1); - model->probA[0] = svm_svr_probability(prob,param); - } - - decision_function f = svm_train_one(prob,param,0,0); - model->rho = Malloc(double,1); - model->rho[0] = f.rho; - - int nSV = 0; - int i; - for(i=0;i<prob->l;i++) - if(fabs(f.alpha[i]) > 0) ++nSV; - model->l = nSV; - model->SV = Malloc(svm_node *,nSV); - model->sv_coef[0] = Malloc(double,nSV); - model->sv_indices = Malloc(int,nSV); - int j = 0; - for(i=0;i<prob->l;i++) - if(fabs(f.alpha[i]) > 0) - { - model->SV[j] = prob->x[i]; - model->sv_coef[0][j] = f.alpha[i]; - model->sv_indices[j] = i+1; - ++j; - } - - free(f.alpha); - } - else - { - // classification - int l = prob->l; - int nr_class; - int *label = NULL; - int *start = NULL; - int *count = NULL; - int *perm = Malloc(int,l); - - // group training data of the same class - svm_group_classes(prob,&nr_class,&label,&start,&count,perm); - if(nr_class == 1) - info("WARNING: training data in only one class. See README for details.\n"); - - svm_node **x = Malloc(svm_node *,l); - double *W; - W = Malloc(double,l); - - int i; - for(i=0;i<l;i++) - { - x[i] = prob->x[perm[i]]; - W[i] = prob->W[perm[i]]; - } - - // calculate weighted C - - double *weighted_C = Malloc(double, nr_class); - for(i=0;i<nr_class;i++) - weighted_C[i] = param->C; - for(i=0;i<param->nr_weight;i++) - { - int j; - for(j=0;j<nr_class;j++) - if(param->weight_label[i] == label[j]) - break; - if(j == nr_class) - fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]); - else - weighted_C[j] *= param->weight[i]; - } - - // train k*(k-1)/2 models - - bool *nonzero = Malloc(bool,l); - for(i=0;i<l;i++) - nonzero[i] = false; - decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); - - double *probA=NULL,*probB=NULL; - if (param->probability) - { - probA=Malloc(double,nr_class*(nr_class-1)/2); - probB=Malloc(double,nr_class*(nr_class-1)/2); - } - - int p = 0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - svm_problem sub_prob; - int si = start[i], sj = start[j]; - int ci = count[i], cj = count[j]; - sub_prob.l = ci+cj; - sub_prob.x = Malloc(svm_node *,sub_prob.l); - sub_prob.y = Malloc(double,sub_prob.l); - sub_prob.W = Malloc(double,sub_prob.l); - int k; - for(k=0;k<ci;k++) - { - sub_prob.x[k] = x[si+k]; - sub_prob.y[k] = +1; - sub_prob.W[k] = W[si+k]; - } - for(k=0;k<cj;k++) - { - sub_prob.x[ci+k] = x[sj+k]; - sub_prob.y[ci+k] = -1; - sub_prob.W[ci+k] = W[sj+k]; - } - - if(param->probability) - svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); - - f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); - for(k=0;k<ci;k++) - if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) - nonzero[si+k] = true; - for(k=0;k<cj;k++) - if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) - nonzero[sj+k] = true; - free(sub_prob.x); - free(sub_prob.y); - free(sub_prob.W); - ++p; - } - - // build output - - model->nr_class = nr_class; - - model->label = Malloc(int,nr_class); - for(i=0;i<nr_class;i++) - model->label[i] = label[i]; - - model->rho = Malloc(double,nr_class*(nr_class-1)/2); - for(i=0;i<nr_class*(nr_class-1)/2;i++) - model->rho[i] = f[i].rho; - - if(param->probability) - { - model->probA = Malloc(double,nr_class*(nr_class-1)/2); - model->probB = Malloc(double,nr_class*(nr_class-1)/2); - for(i=0;i<nr_class*(nr_class-1)/2;i++) - { - model->probA[i] = probA[i]; - model->probB[i] = probB[i]; - } - } - else - { - model->probA=NULL; - model->probB=NULL; - } - - int total_sv = 0; - int *nz_count = Malloc(int,nr_class); - model->nSV = Malloc(int,nr_class); - for(i=0;i<nr_class;i++) - { - int nSV = 0; - for(int j=0;j<count[i];j++) - if(nonzero[start[i]+j]) - { - ++nSV; - ++total_sv; - } - model->nSV[i] = nSV; - nz_count[i] = nSV; - } - - info("Total nSV = %d\n",total_sv); - - model->l = total_sv; - model->SV = Malloc(svm_node *,total_sv); - model->sv_indices = Malloc(int,total_sv); - p = 0; - for(i=0;i<l;i++) - if(nonzero[i]) - { - model->SV[p] = x[i]; - model->sv_indices[p++] = perm[i] + 1; - } - - int *nz_start = Malloc(int,nr_class); - nz_start[0] = 0; - for(i=1;i<nr_class;i++) - nz_start[i] = nz_start[i-1]+nz_count[i-1]; - - model->sv_coef = Malloc(double *,nr_class-1); - for(i=0;i<nr_class-1;i++) - model->sv_coef[i] = Malloc(double,total_sv); - - p = 0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - // classifier (i,j): coefficients with - // i are in sv_coef[j-1][nz_start[i]...], - // j are in sv_coef[i][nz_start[j]...] - - int si = start[i]; - int sj = start[j]; - int ci = count[i]; - int cj = count[j]; - - int q = nz_start[i]; - int k; - for(k=0;k<ci;k++) - if(nonzero[si+k]) - model->sv_coef[j-1][q++] = f[p].alpha[k]; - q = nz_start[j]; - for(k=0;k<cj;k++) - if(nonzero[sj+k]) - model->sv_coef[i][q++] = f[p].alpha[ci+k]; - ++p; - } - - free(label); - free(probA); - free(probB); - free(count); - free(perm); - free(start); - free(W); - free(x); - free(weighted_C); - free(nonzero); - for(i=0;i<nr_class*(nr_class-1)/2;i++) - free(f[i].alpha); - free(f); - free(nz_count); - free(nz_start); - } - free(newprob.x); - free(newprob.y); - free(newprob.W); - return model; -} - -// Stratified cross validation -void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target) -{ - int i; - int *fold_start = Malloc(int,nr_fold+1); - int l = prob->l; - int *perm = Malloc(int,l); - int nr_class; - - // stratified cv may not give leave-one-out rate - // Each class to l folds -> some folds may have zero elements - if((param->svm_type == C_SVC || - param->svm_type == NU_SVC) && nr_fold < l) - { - int *start = NULL; - int *label = NULL; - int *count = NULL; - svm_group_classes(prob,&nr_class,&label,&start,&count,perm); - - // random shuffle and then data grouped by fold using the array perm - int *fold_count = Malloc(int,nr_fold); - int c; - int *index = Malloc(int,l); - for(i=0;i<l;i++) - index[i]=perm[i]; - for (c=0; c<nr_class; c++) - for(i=0;i<count[c];i++) - { - int j = i+rand()%(count[c]-i); - swap(index[start[c]+j],index[start[c]+i]); - } - for(i=0;i<nr_fold;i++) - { - fold_count[i] = 0; - for (c=0; c<nr_class;c++) - fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; - } - fold_start[0]=0; - for (i=1;i<=nr_fold;i++) - fold_start[i] = fold_start[i-1]+fold_count[i-1]; - for (c=0; c<nr_class;c++) - for(i=0;i<nr_fold;i++) - { - int begin = start[c]+i*count[c]/nr_fold; - int end = start[c]+(i+1)*count[c]/nr_fold; - for(int j=begin;j<end;j++) - { - perm[fold_start[i]] = index[j]; - fold_start[i]++; - } - } - fold_start[0]=0; - for (i=1;i<=nr_fold;i++) - fold_start[i] = fold_start[i-1]+fold_count[i-1]; - free(start); - free(label); - free(count); - free(index); - free(fold_count); - } - else - { - for(i=0;i<l;i++) perm[i]=i; - for(i=0;i<l;i++) - { - int j = i+rand()%(l-i); - swap(perm[i],perm[j]); - } - for(i=0;i<=nr_fold;i++) - fold_start[i]=i*l/nr_fold; - } - - for(i=0;i<nr_fold;i++) - { - int begin = fold_start[i]; - int end = fold_start[i+1]; - int j,k; - struct svm_problem subprob; - - subprob.l = l-(end-begin); - subprob.x = Malloc(struct svm_node*,subprob.l); - subprob.y = Malloc(double,subprob.l); - - subprob.W = Malloc(double,subprob.l); - k=0; - for(j=0;j<begin;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - subprob.W[k] = prob->W[perm[j]]; - ++k; - } - for(j=end;j<l;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - subprob.W[k] = prob->W[perm[j]]; - ++k; - } - struct svm_model *submodel = svm_train(&subprob,param); - if(param->probability && - (param->svm_type == C_SVC || param->svm_type == NU_SVC)) - { - double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); - for(j=begin;j<end;j++) - target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates); - free(prob_estimates); - } - else - for(j=begin;j<end;j++) - target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]); - svm_free_and_destroy_model(&submodel); - free(subprob.x); - free(subprob.y); - free(subprob.W); - } - free(fold_start); - free(perm); -} - - -int svm_get_svm_type(const svm_model *model) -{ - return model->param.svm_type; -} - -int svm_get_nr_class(const svm_model *model) -{ - return model->nr_class; -} - -void svm_get_labels(const svm_model *model, int* label) -{ - if (model->label != NULL) - for(int i=0;i<model->nr_class;i++) - label[i] = model->label[i]; -} - -void svm_get_sv_indices(const svm_model *model, int* indices) -{ - if (model->sv_indices != NULL) - for(int i=0;i<model->l;i++) - indices[i] = model->sv_indices[i]; -} - -int svm_get_nr_sv(const svm_model *model) -{ - return model->l; -} - -double svm_get_svr_probability(const svm_model *model) -{ - if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && - model->probA!=NULL) - return model->probA[0]; - else - { - fprintf(stderr,"Model doesn't contain information for SVR probability inference\n"); - return 0; - } -} - -double svm_hyper_w_normsqr_twoclass(const struct svm_model* model) -{ - assert(model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC); - int i, j; - // int nr_class = model->nr_class; - // assert(nr_class == 2); - int l = model->l; - - double sum = 0; - double *coef = model->sv_coef[0]; - - for(i=0;i<l;++i) - for(j=0;j<l;++j) - { - double kv = Kernel::k_function(model->SV[i],model->SV[j],model->param); - sum += kv * coef[i] * coef[j]; - } - - return sum; -} - -double svm_predict_values_twoclass(const struct svm_model* model, const struct svm_node* x) -{ - - assert(model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC); - int i; - // int nr_class = model->nr_class; - // assert(nr_class == 2); - int l = model->l; - - double *kvalue = Malloc(double,l); - for(i=0;i<l;i++) - kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); - - - double sum = 0; - double *coef = model->sv_coef[0]; - for(i=0;i<l;++i) - sum += coef[i] * kvalue[i]; - sum -= model->rho[0]; - - free(kvalue); - - return sum * model->label[0]; -} - -double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) -{ - int i; - if(model->param.svm_type == ONE_CLASS || - model->param.svm_type == EPSILON_SVR || - model->param.svm_type == NU_SVR) - { - double *sv_coef = model->sv_coef[0]; - double sum = 0; - for(i=0;i<model->l;i++) - sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); - sum -= model->rho[0]; - *dec_values = sum; - - if(model->param.svm_type == ONE_CLASS) - return (sum>0)?1:-1; - else - return sum; - } - else - { - int nr_class = model->nr_class; - int l = model->l; - - double *kvalue = Malloc(double,l); - for(i=0;i<l;i++) - kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); - - int *start = Malloc(int,nr_class); - start[0] = 0; - for(i=1;i<nr_class;i++) - start[i] = start[i-1]+model->nSV[i-1]; - - int *vote = Malloc(int,nr_class); - for(i=0;i<nr_class;i++) - vote[i] = 0; - - int p=0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - double sum = 0; - int si = start[i]; - int sj = start[j]; - int ci = model->nSV[i]; - int cj = model->nSV[j]; - - int k; - double *coef1 = model->sv_coef[j-1]; - double *coef2 = model->sv_coef[i]; - for(k=0;k<ci;k++) - sum += coef1[si+k] * kvalue[si+k]; - for(k=0;k<cj;k++) - sum += coef2[sj+k] * kvalue[sj+k]; - sum -= model->rho[p]; - dec_values[p] = sum; - - if(dec_values[p] > 0) - ++vote[i]; - else - ++vote[j]; - p++; - } - - int vote_max_idx = 0; - for(i=1;i<nr_class;i++) - if(vote[i] > vote[vote_max_idx]) - vote_max_idx = i; - - free(kvalue); - free(start); - free(vote); - return model->label[vote_max_idx]; - } -} - -double svm_predict(const svm_model *model, const svm_node *x) -{ - int nr_class = model->nr_class; - double *dec_values; - if(model->param.svm_type == ONE_CLASS || - model->param.svm_type == EPSILON_SVR || - model->param.svm_type == NU_SVR) - dec_values = Malloc(double, 1); - else - dec_values = Malloc(double, nr_class*(nr_class-1)/2); - double pred_result = svm_predict_values(model, x, dec_values); - free(dec_values); - return pred_result; -} - -double svm_predict_probability( - const svm_model *model, const svm_node *x, double *prob_estimates) -{ - if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && - model->probA!=NULL && model->probB!=NULL) - { - int i; - int nr_class = model->nr_class; - double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); - svm_predict_values(model, x, dec_values); - - double min_prob=1e-7; - double **pairwise_prob=Malloc(double *,nr_class); - for(i=0;i<nr_class;i++) - pairwise_prob[i]=Malloc(double,nr_class); - int k=0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); - pairwise_prob[j][i]=1-pairwise_prob[i][j]; - k++; - } - multiclass_probability(nr_class,pairwise_prob,prob_estimates); - - int prob_max_idx = 0; - for(i=1;i<nr_class;i++) - if(prob_estimates[i] > prob_estimates[prob_max_idx]) - prob_max_idx = i; - for(i=0;i<nr_class;i++) - free(pairwise_prob[i]); - free(dec_values); - free(pairwise_prob); - return model->label[prob_max_idx]; - } - else - return svm_predict(model, x); -} - -static const char *svm_type_table[] = - { - "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL - }; - -static const char *kernel_type_table[]= - { - "linear","polynomial","rbf","sigmoid","precomputed",NULL - }; - -int svm_save_model(const char *model_file_name, const svm_model *model) -{ - FILE *fp = fopen(model_file_name,"w"); - if(fp==NULL) return -1; - - char *old_locale = strdup(setlocale(LC_ALL, NULL)); - setlocale(LC_ALL, "C"); - - const svm_parameter& param = model->param; - - fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); - fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); - - if(param.kernel_type == POLY) - fprintf(fp,"degree %d\n", param.degree); - - if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) - fprintf(fp,"gamma %g\n", param.gamma); - - if(param.kernel_type == POLY || param.kernel_type == SIGMOID) - fprintf(fp,"coef0 %g\n", param.coef0); - - int nr_class = model->nr_class; - int l = model->l; - fprintf(fp, "nr_class %d\n", nr_class); - fprintf(fp, "total_sv %d\n",l); - - { - fprintf(fp, "rho"); - for(int i=0;i<nr_class*(nr_class-1)/2;i++) - fprintf(fp," %g",model->rho[i]); - fprintf(fp, "\n"); - } - - if(model->label) - { - fprintf(fp, "label"); - for(int i=0;i<nr_class;i++) - fprintf(fp," %d",model->label[i]); - fprintf(fp, "\n"); - } - - if(model->probA) // regression has probA only - { - fprintf(fp, "probA"); - for(int i=0;i<nr_class*(nr_class-1)/2;i++) - fprintf(fp," %g",model->probA[i]); - fprintf(fp, "\n"); - } - if(model->probB) - { - fprintf(fp, "probB"); - for(int i=0;i<nr_class*(nr_class-1)/2;i++) - fprintf(fp," %g",model->probB[i]); - fprintf(fp, "\n"); - } - - if(model->nSV) - { - fprintf(fp, "nr_sv"); - for(int i=0;i<nr_class;i++) - fprintf(fp," %d",model->nSV[i]); - fprintf(fp, "\n"); - } - - fprintf(fp, "SV\n"); - const double * const *sv_coef = model->sv_coef; - const svm_node * const *SV = model->SV; - - for(int i=0;i<l;i++) - { - for(int j=0;j<nr_class-1;j++) - fprintf(fp, "%.16g ",sv_coef[j][i]); - - const svm_node *p = SV[i]; - - if(param.kernel_type == PRECOMPUTED) - fprintf(fp,"0:%d ",(int)(p->value)); - else - while(p->index != -1) - { - fprintf(fp,"%d:%.8g ",p->index,p->value); - p++; - } - fprintf(fp, "\n"); - } - - setlocale(LC_ALL, old_locale); - free(old_locale); - - if (ferror(fp) != 0 || fclose(fp) != 0) return -1; - else return 0; -} - -static char *line = NULL; -static int max_line_len; - -static char* readline(FILE *input) -{ - int len; - - if(fgets(line,max_line_len,input) == NULL) - return NULL; - - while(strrchr(line,'\n') == NULL) - { - max_line_len *= 2; - line = (char *) realloc(line,max_line_len); - len = (int) strlen(line); - if(fgets(line+len,max_line_len-len,input) == NULL) - break; - } - return line; -} - -svm_model *svm_load_model(const char *model_file_name) -{ - FILE *fp = fopen(model_file_name,"rb"); - if(fp==NULL) return NULL; - - char *old_locale = strdup(setlocale(LC_ALL, NULL)); - setlocale(LC_ALL, "C"); - - // read parameters - - svm_model *model = Malloc(svm_model,1); - svm_parameter& param = model->param; - model->rho = NULL; - model->probA = NULL; - model->probB = NULL; - model->label = NULL; - model->nSV = NULL; - - char cmd[81]; - while(1) - { - fscanf(fp,"%80s",cmd); - - if(strcmp(cmd,"svm_type")==0) - { - fscanf(fp,"%80s",cmd); - int i; - for(i=0;svm_type_table[i];i++) - { - if(strcmp(svm_type_table[i],cmd)==0) - { - param.svm_type=i; - break; - } - } - if(svm_type_table[i] == NULL) - { - fprintf(stderr,"unknown svm type.\n"); - - setlocale(LC_ALL, old_locale); - free(old_locale); - free(model->rho); - free(model->label); - free(model->nSV); - free(model); - return NULL; - } - } - else if(strcmp(cmd,"kernel_type")==0) - { - fscanf(fp,"%80s",cmd); - int i; - for(i=0;kernel_type_table[i];i++) - { - if(strcmp(kernel_type_table[i],cmd)==0) - { - param.kernel_type=i; - break; - } - } - if(kernel_type_table[i] == NULL) - { - fprintf(stderr,"unknown kernel function.\n"); - - setlocale(LC_ALL, old_locale); - free(old_locale); - free(model->rho); - free(model->label); - free(model->nSV); - free(model); - return NULL; - } - } - else if(strcmp(cmd,"degree")==0) - fscanf(fp,"%d",¶m.degree); - else if(strcmp(cmd,"gamma")==0) - fscanf(fp,"%lf",¶m.gamma); - else if(strcmp(cmd,"coef0")==0) - fscanf(fp,"%lf",¶m.coef0); - else if(strcmp(cmd,"nr_class")==0) - fscanf(fp,"%d",&model->nr_class); - else if(strcmp(cmd,"total_sv")==0) - fscanf(fp,"%d",&model->l); - else if(strcmp(cmd,"rho")==0) - { - int n = model->nr_class * (model->nr_class-1)/2; - model->rho = Malloc(double,n); - for(int i=0;i<n;i++) - fscanf(fp,"%lf",&model->rho[i]); - } - else if(strcmp(cmd,"label")==0) - { - int n = model->nr_class; - model->label = Malloc(int,n); - for(int i=0;i<n;i++) - fscanf(fp,"%d",&model->label[i]); - } - else if(strcmp(cmd,"probA")==0) - { - int n = model->nr_class * (model->nr_class-1)/2; - model->probA = Malloc(double,n); - for(int i=0;i<n;i++) - fscanf(fp,"%lf",&model->probA[i]); - } - else if(strcmp(cmd,"probB")==0) - { - int n = model->nr_class * (model->nr_class-1)/2; - model->probB = Malloc(double,n); - for(int i=0;i<n;i++) - fscanf(fp,"%lf",&model->probB[i]); - } - else if(strcmp(cmd,"nr_sv")==0) - { - int n = model->nr_class; - model->nSV = Malloc(int,n); - for(int i=0;i<n;i++) - fscanf(fp,"%d",&model->nSV[i]); - } - else if(strcmp(cmd,"SV")==0) - { - while(1) - { - int c = getc(fp); - if(c==EOF || c=='\n') break; - } - break; - } - else - { - fprintf(stderr,"unknown text in model file: [%s]\n",cmd); - - setlocale(LC_ALL, old_locale); - free(old_locale); - free(model->rho); - free(model->label); - free(model->nSV); - free(model); - return NULL; - } - } - - // read sv_coef and SV - - int elements = 0; - long pos = ftell(fp); - - max_line_len = 1024; - line = Malloc(char,max_line_len); - char *p,*endptr,*idx,*val; - - while(readline(fp)!=NULL) - { - p = strtok(line,":"); - while(1) - { - p = strtok(NULL,":"); - if(p == NULL) - break; - ++elements; - } - } - elements += model->l; - - fseek(fp,pos,SEEK_SET); - - int m = model->nr_class - 1; - int l = model->l; - model->sv_coef = Malloc(double *,m); - int i; - for(i=0;i<m;i++) - model->sv_coef[i] = Malloc(double,l); - model->SV = Malloc(svm_node*,l); - svm_node *x_space = NULL; - if(l>0) x_space = Malloc(svm_node,elements); - - int j=0; - for(i=0;i<l;i++) - { - readline(fp); - model->SV[i] = &x_space[j]; - - p = strtok(line, " \t"); - model->sv_coef[0][i] = strtod(p,&endptr); - for(int k=1;k<m;k++) - { - p = strtok(NULL, " \t"); - model->sv_coef[k][i] = strtod(p,&endptr); - } - - while(1) - { - idx = strtok(NULL, ":"); - val = strtok(NULL, " \t"); - - if(val == NULL) - break; - x_space[j].index = (int) strtol(idx,&endptr,10); - x_space[j].value = strtod(val,&endptr); - - ++j; - } - x_space[j++].index = -1; - } - free(line); - - setlocale(LC_ALL, old_locale); - free(old_locale); - - if (ferror(fp) != 0 || fclose(fp) != 0) - return NULL; - - model->free_sv = 1; // XXX - return model; -} - -void svm_free_model_content(svm_model* model_ptr) -{ - if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL) - free((void *)(model_ptr->SV[0])); - if(model_ptr->sv_coef) - { - for(int i=0;i<model_ptr->nr_class-1;i++) - free(model_ptr->sv_coef[i]); - } - - free(model_ptr->SV); - model_ptr->SV = NULL; - - free(model_ptr->sv_coef); - model_ptr->sv_coef = NULL; - - free(model_ptr->rho); - model_ptr->rho = NULL; - - free(model_ptr->label); - model_ptr->label= NULL; - - free(model_ptr->probA); - model_ptr->probA = NULL; - - free(model_ptr->probB); - model_ptr->probB= NULL; - - free(model_ptr->nSV); - model_ptr->nSV = NULL; -} - -void svm_free_and_destroy_model(svm_model** model_ptr_ptr) -{ - if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL) - { - svm_free_model_content(*model_ptr_ptr); - free(*model_ptr_ptr); - *model_ptr_ptr = NULL; - } -} - -void svm_destroy_param(svm_parameter* param) -{ - free(param->weight_label); - free(param->weight); -} - -const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) -{ - // svm_type - - int svm_type = param->svm_type; - if(svm_type != C_SVC && - svm_type != NU_SVC && - svm_type != ONE_CLASS && - svm_type != EPSILON_SVR && - svm_type != NU_SVR) - return "unknown svm type"; - - // kernel_type, degree - - int kernel_type = param->kernel_type; - if(kernel_type != LINEAR && - kernel_type != POLY && - kernel_type != RBF && - kernel_type != SIGMOID && - kernel_type != PRECOMPUTED) - return "unknown kernel type"; - - if(param->gamma < 0) - return "gamma < 0"; - - if(param->degree < 0) - return "degree of polynomial kernel < 0"; - - // cache_size,eps,C,nu,p,shrinking - - if(param->cache_size <= 0) - return "cache_size <= 0"; - - if(param->eps <= 0) - return "eps <= 0"; - - if(svm_type == C_SVC || - svm_type == EPSILON_SVR || - svm_type == NU_SVR) - if(param->C <= 0) - return "C <= 0"; - - if(svm_type == NU_SVC || - svm_type == ONE_CLASS || - svm_type == NU_SVR) - if(param->nu <= 0 || param->nu > 1) - return "nu <= 0 or nu > 1"; - - if(svm_type == EPSILON_SVR) - if(param->p < 0) - return "p < 0"; - - if(param->shrinking != 0 && - param->shrinking != 1) - return "shrinking != 0 and shrinking != 1"; - - if(param->probability != 0 && - param->probability != 1) - return "probability != 0 and probability != 1"; - - if(param->probability == 1 && - svm_type == ONE_CLASS) - return "one-class SVM probability output not supported yet"; - - - // check whether nu-svc is feasible - - if(svm_type == NU_SVC) - { - int l = prob->l; - int max_nr_class = 16; - int nr_class = 0; - int *label = Malloc(int,max_nr_class); - double *count = Malloc(double,max_nr_class); - - int i; - for(i=0;i<l;i++) - { - int this_label = (int)prob->y[i]; - int j; - for(j=0;j<nr_class;j++) - if(this_label == label[j]) - { - count[j] += prob->W[i]; - break; - } - if(j == nr_class) - { - if(nr_class == max_nr_class) - { - max_nr_class *= 2; - label = (int *)realloc(label,max_nr_class*sizeof(int)); - count = (double *)realloc(count,max_nr_class*sizeof(double)); - } - label[nr_class] = this_label; - count[nr_class] = prob->W[i]; - ++nr_class; - } - } - - for(i=0;i<nr_class;i++) - { - double n1 = count[i]; - for(int j=i+1;j<nr_class;j++) - { - double n2 = count[j]; - if(param->nu*(n1+n2)/2 > min(n1,n2)) - { - free(label); - free(count); - return "specified nu is infeasible"; - } - } - } - free(label); - free(count); - } - - return NULL; -} - -int svm_check_probability_model(const svm_model *model) -{ - return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && - model->probA!=NULL && model->probB!=NULL) || - ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && - model->probA!=NULL); -} - -void svm_set_print_string_function(void (*print_func)(const char *)) -{ - if(print_func == NULL) - svm_print_string = &print_string_stdout; - else - svm_print_string = print_func; -} diff --git a/test/libsvm/svm.h b/test/libsvm/svm.h deleted file mode 100644 index 0b42202d..00000000 --- a/test/libsvm/svm.h +++ /dev/null @@ -1,115 +0,0 @@ -#ifndef _LIBSVM_H -#define _LIBSVM_H - -#include <cstdlib> - -#define LIBSVM_VERSION 314 - -#ifdef __cplusplus -extern "C" { -#endif - - extern int libsvm_version; - - struct svm_node - { - int index; - double value; - }; - - struct svm_problem - { - int l; - double *y; - struct svm_node **x; - double *W; /* instance weight */ - }; - - enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ - enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ - - struct svm_parameter - { - int svm_type; - int kernel_type; - int degree; /* for poly */ - double gamma; /* for poly/rbf/sigmoid */ - double coef0; /* for poly/sigmoid */ - - /* these are for training only */ - double cache_size; /* in MB */ - double eps; /* stopping criteria */ - double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ - int nr_weight; /* for C_SVC */ - int *weight_label; /* for C_SVC */ - double* weight; /* for C_SVC */ - double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ - double p; /* for EPSILON_SVR */ - int shrinking; /* use the shrinking heuristics */ - int probability; /* do probability estimates */ - }; - - // - // svm_model - // - struct svm_model - { - struct svm_parameter param; /* parameter */ - int nr_class; /* number of classes, = 2 in regression/one class svm */ - int l; /* total #SV */ - struct svm_node **SV; /* SVs (SV[l]) */ - double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */ - double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */ - double *probA; /* pairwise probability information */ - double *probB; - int *sv_indices; /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */ - - - /* for classification only */ - - int *label; /* label of each class (label[k]) */ - int *nSV; /* number of SVs for each class (nSV[k]) */ - /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */ - /* XXX */ - int free_sv; /* 1 if svm_model is created by svm_load_model*/ - /* 0 if svm_model is created by svm_train */ - }; - - struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); - void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); - - int svm_save_model(const char *model_file_name, const struct svm_model *model); - struct svm_model *svm_load_model(const char *model_file_name); - - int svm_get_svm_type(const struct svm_model *model); - int svm_get_nr_class(const struct svm_model *model); - void svm_get_labels(const struct svm_model *model, int *label); - void svm_get_sv_indices(const struct svm_model *model, int *sv_indices); - int svm_get_nr_sv(const struct svm_model *model); - double svm_get_svr_probability(const struct svm_model *model); - - double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); - double svm_predict(const struct svm_model *model, const struct svm_node *x); - double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); - - double svm_predict_values_twoclass(const struct svm_model* model, const struct svm_node* x); - double svm_hyper_w_normsqr_twoclass(const struct svm_model* model); - - - double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param); - - - void svm_free_model_content(struct svm_model *model_ptr); - void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr); - void svm_destroy_param(struct svm_parameter *param); - - const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); - int svm_check_probability_model(const struct svm_model *model); - - void svm_set_print_string_function(void (*print_func)(const char *)); - -#ifdef __cplusplus -} -#endif - -#endif /* _LIBSVM_H */ diff --git a/test/libsvm_classifier.h b/test/libsvm_classifier.h deleted file mode 100644 index 31e81eca..00000000 --- a/test/libsvm_classifier.h +++ /dev/null @@ -1,212 +0,0 @@ -#ifndef FCL_TEST_LIBSVM_CLASSIFIER_H -#define FCL_TEST_LIBSVM_CLASSIFIER_H - -#include <hpp/fcl/learning/classifier.h> -#include <libsvm/svm.h> - -namespace fcl -{ - - -template<std::size_t N> -class LibSVMClassifier : public SVMClassifier<N> -{ -public: - LibSVMClassifier() - { - param.svm_type = C_SVC; - param.kernel_type = RBF; - param.degree = 3; - param.gamma = 0; // 1/num_features - param.coef0 = 0; - param.nu = 0.5; - param.cache_size = 100; // can change - param.C = 1; - param.eps = 1e-3; - param.p = 0.1; - param.shrinking = 1; // use shrinking - param.probability = 0; - param.nr_weight = 0; - param.weight_label = NULL; - param.weight = NULL; - - param.nr_weight = 2; - param.weight_label = (int *)realloc(param.weight_label, sizeof(int) * param.nr_weight); - param.weight = (double *)realloc(param.weight, sizeof(double) * param.nr_weight); - param.weight_label[0] = -1; - param.weight_label[1] = 1; - param.weight[0] = 1; - param.weight[1] = 1; - - model = NULL; - x_space = NULL; - problem.x = NULL; - problem.y = NULL; - problem.W = NULL; - } - - - void setCSVM() { param.svm_type = C_SVC; } - void setNuSVM() { param.svm_type = NU_SVC; } - void setC(FCL_REAL C) { param.C = C; } - void setNu(FCL_REAL nu) { param.nu = nu; } - void setLinearClassifier() { param.kernel_type = LINEAR; } - void setNonLinearClassifier() { param.kernel_type = RBF; } - void setProbability(bool use_probability) { param.probability = use_probability; } - virtual void setScaler(const Scaler<N>& scaler_) - { - scaler = scaler_; - } - - void setNegativeWeight(FCL_REAL c) - { - param.weight[0] = c; - } - - void setPositiveWeight(FCL_REAL c) - { - param.weight[1] = c; - } - - void setEPS(FCL_REAL e) - { - param.eps = e; - } - - void setGamma(FCL_REAL gamma) - { - param.gamma = gamma; - } - - ~LibSVMClassifier() - { - svm_destroy_param(¶m); - svm_free_and_destroy_model(&model); - delete [] x_space; - delete [] problem.x; - delete [] problem.y; - delete [] problem.W; - } - - virtual void learn(const std::vector<Item<N> >& data) - { - if(data.size() == 0) return; - - if(model) svm_free_and_destroy_model(&model); - if(param.gamma == 0) param.gamma = 1.0 / N; - - problem.l = data.size(); - if(problem.y) delete [] problem.y; - problem.y = new double [problem.l]; - if(problem.x) delete [] problem.x; - problem.x = new svm_node* [problem.l]; - if(problem.W) delete [] problem.W; - problem.W = new double [problem.l]; - if(x_space) delete [] x_space; - x_space = new svm_node [(N + 1) * problem.l]; - - for(std::size_t i = 0; i < data.size(); ++i) - { - svm_node* cur_x_space = x_space + (N + 1) * i; - Vecnf<N> q_scaled = scaler.scale(data[i].q); - for(std::size_t j = 0; j < N; ++j) - { - cur_x_space[j].index = j + 1; - cur_x_space[j].value = q_scaled[j]; - } - cur_x_space[N].index = -1; - - problem.x[i] = cur_x_space; - problem.y[i] = (data[i].label ? 1 : -1); - problem.W[i] = data[i].w; - } - - model = svm_train(&problem, ¶m); - hyperw_normsqr = svm_hyper_w_normsqr_twoclass(model); - } - - virtual std::vector<PredictResult> predict(const std::vector<Vecnf<N> >& qs) const - { - std::vector<PredictResult> predict_results; - - int nr_class = svm_get_nr_class(model); - double* prob_estimates = NULL; - - svm_node* x = (svm_node*)malloc((N + 1) * sizeof(svm_node)); - if(param.probability) - prob_estimates = (double*)malloc(nr_class * sizeof(double)); - - Vecnf<N> v; - for(std::size_t i = 0; i < qs.size(); ++i) - { - v = scaler.scale(qs[i]); - for(std::size_t j = 0; j < N; ++j) - { - x[j].index = j + 1; - x[j].value = v[j]; - } - x[N].index = -1; - - double predict_label; - - if(param.probability) - { - predict_label = svm_predict_probability(model, x, prob_estimates); - predict_label = (predict_label > 0) ? 1 : 0; - predict_results.push_back(PredictResult(predict_label, *prob_estimates)); - } - else - { - predict_label = svm_predict(model, x); - predict_label = (predict_label > 0) ? 1 : 0; - predict_results.push_back(PredictResult(predict_label)); - } - } - - if(param.probability) free(prob_estimates); - free(x); - - return predict_results; - } - - virtual PredictResult predict(const Vecnf<N>& q) const - { - return (predict(std::vector<Vecnf<N> >(1, q)))[0]; - } - - void save(const std::string& filename) const - { - if(model) - svm_save_model(filename.c_str(), model); - } - - virtual std::vector<Item<N> > getSupportVectors() const - { - std::vector<Item<N> > results; - Item<N> item; - for(std::size_t i = 0; i < (std::size_t)model->l; ++i) - { - for(std::size_t j = 0; j < N; ++j) - item.q[j] = model->SV[i][j].value; - item.q = scaler.unscale(item.q); - int id = model->sv_indices[i] - 1; - item.label = (problem.y[id] > 0); - results.push_back(item); - } - - return results; - } - - svm_parameter param; - svm_problem problem; - svm_node* x_space; - svm_model* model; - double hyperw_normsqr; - - Scaler<N> scaler; -}; - - -} - -#endif diff --git a/test/test_fcl_simple.cpp b/test/test_fcl_simple.cpp index 039b774b..8d88975d 100644 --- a/test/test_fcl_simple.cpp +++ b/test/test_fcl_simple.cpp @@ -19,18 +19,6 @@ static bool approx(FCL_REAL x, FCL_REAL y) return std::abs(x - y) < epsilon; } - - -template<std::size_t N> -double distance_Vecnf(const Vecnf<N>& a, const Vecnf<N>& b) -{ - double d = 0; - for(std::size_t i = 0; i < N; ++i) - d += (a[i] - b[i]) * (a[i] - b[i]); - - return d; -} - BOOST_AUTO_TEST_CASE(projection_test_line) { Vec3f v1(0, 0, 0); -- GitLab